cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A089928 a(n) = 2*a(n-1) + 2*a(n-3) + a(n-4), with a(0)=1, a(1)=2, a(3)=4, a(4)=10.

Original entry on oeis.org

1, 2, 4, 10, 25, 60, 144, 348, 841, 2030, 4900, 11830, 28561, 68952, 166464, 401880, 970225, 2342330, 5654884, 13652098, 32959081, 79570260, 192099600, 463769460, 1119638521, 2703046502, 6525731524, 15754509550, 38034750625, 91824010800
Offset: 0

Views

Author

Paul Barry, Nov 15 2003

Keywords

Comments

a(n) is the number of tilings of an n-board (a board of size n X 1) using white squares, black squares, and white (1,1)-fences. A (1,1)-fence is a tile composed of two squares separated by a gap of width 1. - Michael A. Allen, Mar 12 2021
a(n) is the number of tilings of an n-board using white squares, black squares, white trominoes, black trominoes, and white tetrominoes. - Michael A. Allen, Mar 12 2021

Crossrefs

Programs

  • Magma
    [(Evaluate(DicksonFirst(n+2,-1), 2) + 2*(-1)^Binomial(n,2))/8: n in [0..40]]; // G. C. Greubel, Aug 18 2022
    
  • Mathematica
    CoefficientList[Series[1/(1-2x-2x^3-x^4),{x,0,30}],x] (* Michael A. Allen, Mar 12 2021 *)
    LinearRecurrence[{2,0,2,1}, {1,2,4,10}, 41] (* G. C. Greubel, Aug 18 2022 *)
    nxt[{a_,b_,c_,d_}]:={b,c,d,2d+2b+a}; NestList[nxt,{1,2,4,10},30][[;;,1]] (* Harvey P. Dale, Jul 18 2024 *)
  • SageMath
    [(lucas_number2(n+2,2,-1) +2*(-1)^binomial(n,2))/8 for n in (0..40)] # G. C. Greubel, Aug 18 2022

Formula

a(n) = ( (1+sqrt(2))^(n+2) + (1-sqrt(2))^(n+2) + 2*(-1)^floor(n/2) )/8.
a(n) = (-i)^n*Sum_{k=0..floor(n/2)} U(n-2*k, i) with i^2 = -1.
a(n) + a(n+2) = A000129(n+3). - Alex Ratushnyak, Aug 06 2012
G.f.: 1/ ( (1+2*x)*(1-2*x-x^2) ). - R. J. Mathar, Apr 26 2013
4*a(n) = A057077(n) + A001333(n+2). - R. J. Mathar, Apr 26 2013
a(2*n) = (A000129(n+1))^2 = A079291(n+1). - Michael A. Allen, Mar 12 2021
a(2*n+1) = A000129(n+1)*A000129(n+2) = A114620(n+1). - Michael A. Allen, Mar 12 2021

Extensions

Formula corrected by Max Alekseyev, Aug 22 2013

A276914 Subsequence of triangular numbers obtained by adding a square and two smaller triangles, a(n) = n^2 + 2*A000217(A052928(n)).

Original entry on oeis.org

0, 1, 10, 15, 36, 45, 78, 91, 136, 153, 210, 231, 300, 325, 406, 435, 528, 561, 666, 703, 820, 861, 990, 1035, 1176, 1225, 1378, 1431, 1596, 1653, 1830, 1891, 2080, 2145, 2346, 2415, 2628, 2701, 2926, 3003, 3240, 3321, 3570, 3655, 3916, 4005, 4278, 4371, 4656
Offset: 0

Views

Author

Daniel Poveda Parrilla, Sep 22 2016

Keywords

Comments

All terms of this sequence are triangular numbers. Graphically, for each term of the sequence, one corner of the square will be part of the corresponding triangle's hypotenuse if the term is an odd number. Otherwise, it will not be part of it.
a(A276915(n)) is a triangular pentagonal number.
a(A079291(n)) is a triangular square number, as A275496 is a subsequence of this.

Crossrefs

Programs

  • Magma
    [n*(2*n+(-1)^n): n in [0..40]]; // G. C. Greubel, Aug 19 2022
    
  • Mathematica
    Table[n (2 n + (-1)^n), {n, 0, 48}] (* Michael De Vlieger, Sep 23 2016 *)
  • PARI
    concat(0, Vec(x*(1+9*x+3*x^2+3*x^3)/((1-x)^3*(1+x)^2) + O(x^50))) \\ Colin Barker, Sep 23 2016
    
  • SageMath
    [n*(2*n+(-1)^n) for n in (0..40)] # G. C. Greubel, Aug 19 2022

Formula

a(n) = n^2 + 2*A000217(A052928(n)).
a(n) = A000217(A042948(n)).
a(n) = n*(2*n + (-1)^n).
a(n) = n*A168277(n + 1).
a(n) = n*A016813(A004526(n)).
From Colin Barker, Sep 23 2016: (Start)
G.f.: x*(1 + 9*x + 3*x^2 + 3*x^3) / ((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
a(n) = n*(2*n+1) for n even.
a(n) = n*(2*n-1) for n odd. (End)
E.g.f.: x*( 2*(1+x)*exp(x) - exp(-x) ). - G. C. Greubel, Aug 19 2022
Sum_{n>=1} 1/a(n) = 2 - log(2). - Amiram Eldar, Aug 21 2022

A098212 Expansion of (5-x^2)/((1+x)*(1-6*x+x^2)).

Original entry on oeis.org

5, 25, 149, 865, 5045, 29401, 171365, 998785, 5821349, 33929305, 197754485, 1152597601, 6717831125, 39154389145, 228208503749, 1330096633345, 7752371296325, 45184131144601, 263352415571285, 1534930362283105, 8946229758127349, 52142448186480985
Offset: 0

Views

Author

Creighton Dement, Oct 25 2004

Keywords

Comments

Old name was: Relates the squares of Pell numbers with the squares of the numerators of continued fraction convergents to sqrt(2).
Floretion Algebra Multiplication Program, FAMP Code: 1vesseq[(j' + k' + 'ii')*('j + 'k + 'ii')] - Creighton Dement, Aug 16 2005

Crossrefs

Programs

  • Magma
    I:=[5,25,149]; [n le 3 select I[n] else 5*Self(n-1)+5*Self(n-2)-Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jul 26 2015
    
  • Mathematica
    a[0]= 5; a[1]= 25; a[2]= 149; a[n_]:= a[n]= 5 a[n-1] + 5 a[n-2] - a[n-3]; Table[ a[n], {n,0,40}] (* Robert G. Wilson v, Nov 05 2004 *)
    CoefficientList[Series[(5-x^2)/((1+x)(1-6x+x^2)),{x,0,40}],x] (* or *) LinearRecurrence[{5,5,-1},{5,25,149},40] (* Harvey P. Dale, Jun 09 2011 *)
  • PARI
    Vec((5-x^2)/((1+x)*(1-6*x+x^2))+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
    
  • SageMath
    def Pell(n): return lucas_number1(n,2,-1)
    [4*Pell(n+1)^2 +(Pell(n+1) +Pell(n))^2  for n in (0..40)] # G. C. Greubel, Aug 20 2022

Formula

G.f.: (5-x^2)/((1+x)*(1-6*x+x^2)).
a(n) = 4*A079291(n+1) + A090390(n+1) = 4(A000129(n+1))^2 + (A001333(n+1))^2.
a(n) + a(n+1) = A075848(n+2) - A075848(n+1).
a(n) = A001541(n+1) + 2*A079291(n+1). - Creighton Dement, Oct 26 2004
a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3), a(0) = 5, a(1) = 25, a(2) = 149. - Robert G. Wilson v, Nov 05 2004
2*a(n) = (-1)^n + 3*A001541(n+1). - R. J. Mathar, Sep 11 2019

A105058 Expansion of g.f. (1+8*x-x^2)/((1+x)*(1-6*x+x^2)).

Original entry on oeis.org

1, 13, 69, 409, 2377, 13861, 80781, 470833, 2744209, 15994429, 93222357, 543339721, 3166815961, 18457556053, 107578520349, 627013566049, 3654502875937, 21300003689581, 124145519261541, 723573111879673
Offset: 0

Views

Author

Creighton Dement, Apr 04 2005

Keywords

Comments

A floretion-generated sequence relating the squares of the numerators of continued fraction convergents to sqrt(2) to the squares of the denominators of continued fraction convergents to sqrt(2) (Pell numbers).
Floretion Algebra Multiplication Program, FAMP Code:
1dia[J]tesseq[ - .5'j + .5'k - .5j' + .5k' - 2'ii' + 'jj' - 'kk' + .5'ij' + .5'ik' + .5'ji' + 'jk' + .5'ki' + 'kj' + e ]. Identity used: dia[I]tes + dia[J]tes + dia[K]tes = jes + fam + 3tes.

Crossrefs

Programs

  • Magma
    [Evaluate(DicksonSecond(2*n+1, -1), 2) -(-1)^n: n in [0..30]]; // G. C. Greubel, Aug 21 2022
    
  • Mathematica
    CoefficientList[ Series[(1+8x-x^2)/((1+x)(1-6x+x^2)), {x,0,30}], x] (* Robert G. Wilson v, Apr 06 2005 *)
    LinearRecurrence[{5,5,-1}, {1,13,69}, 30] (* Harvey P. Dale, Jun 03 2017 *)
  • SageMath
    [lucas_number1(2*n+2,2,-1) -(-1)^n for n in (0..30)] # G. C. Greubel, Aug 21 2022

Formula

a(n) = 2 * A001109(n+1) - (-1)^n.
G.f.: G(0)/(1-3*x) - 1/(1+x), where G(k) = 1 + 1/(1 - x*(8*k-9)/( x*(8*k-1) - 3/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 12 2013
From G. C. Greubel, Aug 21 2022: (Start)
a(n) = A000129(2*n+2) - (-1)^n.
E.g.f.: exp(3*x)*( 2*cosh(2*sqrt(2)*x) + (3/sqrt(2))*sinh(2*sqrt(2)*x)) - exp(-x). (End)

A244352 a(n) = Pell(n)^3 - Pell(n)^2, where Pell(n) is the n-th Pell number (A000129).

Original entry on oeis.org

0, 0, 4, 100, 1584, 23548, 338100, 4798248, 67750848, 954701400, 13441659268, 189185124940, 2662308356400, 37463104912660, 527155118240244, 7417689205890000, 104375121328998144, 1468671237346368048, 20665783224031936900, 290789699203441908148
Offset: 0

Views

Author

Colin Barker, Jun 26 2014

Keywords

Examples

			a(3) = Pell(3)^3 - Pell(3)^2 = 5^3 - 5^2 = 100.
		

Crossrefs

Programs

  • Magma
    Pell:= func< n | n eq 0 select 0 else Evaluate(DicksonSecond(n-1,-1),2) >;
    [Pell(n)^3 - Pell(n)^2: n in [0..40]]; // G. C. Greubel, Aug 20 2022
    
  • Mathematica
    CoefficientList[Series[4*x^2*(3*x^3-4*x^2+8*x+1) / ((x+1)*(x^2-6*x+1)*(x^2-2*x-1)*(x^2+14*x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 26 2014 *)
  • PARI
    pell(n) = round(((1+sqrt(2))^n-(1-sqrt(2))^n)/(2*sqrt(2)))
    vector(50, n, pell(n-1)^3-pell(n-1)^2)
    
  • SageMath
    def Pell(n): return lucas_number1(n,2,-1)
    [Pell(n)^3 -Pell(n)^2 for n in (0..40)] # G. C. Greubel, Aug 20 2022

Formula

a(n) = A110272(n) - A079291(n).
G.f.: 4*x^2*(1+8*x-4*x^2+3*x^3) / ((1+x)*(1-6*x+x^2)*(1+2*x-x^2)*(1-14*x-x^2)).
a(n) = A045991(A000129(n)). - Michel Marcus, Jun 26 2014

A276916 Subsequence of centered square numbers obtained by adding four triangles from A276914 and a central element, a(n) = 4*A276914(n) + 1.

Original entry on oeis.org

1, 5, 41, 61, 145, 181, 313, 365, 545, 613, 841, 925, 1201, 1301, 1625, 1741, 2113, 2245, 2665, 2813, 3281, 3445, 3961, 4141, 4705, 4901, 5513, 5725, 6385, 6613, 7321, 7565, 8321, 8581, 9385, 9661, 10513, 10805, 11705, 12013, 12961, 13285, 14281, 14621, 15665
Offset: 0

Views

Author

Daniel Poveda Parrilla, Sep 27 2016

Keywords

Comments

All terms of this sequence are centered square numbers. Graphically, each term of the sequence is made of four squares, eight triangles and a central element.
a(A220185(n+1)) = A008844(2n) = A079291(4n+1), which is a square of a Pell number.

Crossrefs

Programs

  • Magma
    [4*n*(2*n+(-1)^n)+1 : n in [0..60]]; // Wesley Ivan Hurt, Sep 27 2016
    
  • Maple
    A276916:=n->4*n*(2*n+(-1)^n)+1: seq(A276916(n), n=0..60); # Wesley Ivan Hurt, Sep 27 2016
  • Mathematica
    Table[4 n (2 n + (-1)^n) + 1, {n, 0, 44}] (* or *)
    CoefficientList[Series[(1 +4x +34x^2 +12x^3 +13x^4)/((1-x)^3*(1+x)^2), {x, 0, 44}], x] (* Michael De Vlieger, Sep 28 2016 *)
  • PARI
    Vec((1+4*x+34*x^2+12*x^3+13*x^4)/((1-x)^3*(1+x)^2) + O(x^50)) \\ Colin Barker, Sep 27 2016
    
  • SageMath
    [4*n*(2*n+(-1)^n) +1 for n in (0..60)] # G. C. Greubel, Aug 19 2022

Formula

a(n) = 4*n*(2*n + (-1)^n) + 1.
a(n) = 4*n*(2*n + 1) + 1 for n even.
a(n) = 4*n*(2*n - 1) + 1 for n odd.
a(n) is sum of two squares; a(n) = k^2 + (k+1)^2 where k = 2n-(n mod 2). - David A. Corneth, Sep 27 2016
From Colin Barker, Sep 27 2016: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 4.
G.f.: (1+4*x+34*x^2+12*x^3+13*x^4) / ((1-x)^3*(1+x)^2). (End)
E.g.f.: (1+8*x+8*x^2)*exp(x) - 4*x*exp(-x). - G. C. Greubel, Aug 19 2022
Previous Showing 21-26 of 26 results.