cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A218342 Decimal expansion of e^-gamma * Product_(1 - 1/(p^3 - p^2 - p + 1)) where the product is over all primes p.

Original entry on oeis.org

3, 4, 5, 3, 7, 2, 0, 6, 4, 1, 0, 2, 9, 8, 6, 4, 8, 7, 6, 7, 3, 4, 9, 6, 8, 2, 7, 8, 9, 1, 0, 3, 3, 7, 1, 0, 7, 2, 0, 6, 6, 5, 6, 2, 5, 3, 8, 0, 4, 1, 5, 8, 7, 2, 0, 5, 6, 0, 0, 4, 8, 9, 6, 6, 2, 5, 2, 6, 5, 3, 1, 9, 5, 0, 2, 2, 5, 1, 8, 6, 6, 9, 4, 7, 9, 0, 9, 1, 1, 6, 1, 3, 9, 2, 2, 7, 6, 3, 9, 6, 9, 6, 4, 4, 7
Offset: 0

Views

Author

Keywords

Comments

The average order of Carmichael's lambda function is x/log x * exp(B log log x/log log log x (1 + o(1))), where B is this constant. Under the GRH, the same applies to A036391(n)/n, the sum of the orders mod n of the numbers coprime to n divided by n.

Examples

			0.34537206410298648767349682789103371072066562538041...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 200; m0 = 1000; dm = 200; digits = 105; Clear[f]; f[m_] := f[m] = (slog = Normal[Series[Log[1 - 1/((p - 1)^2*(p + 1))], {p, Infinity, m}]]; Exp[slog] /. Power[p, n_] -> PrimeZetaP[-n] // N[#, digits + 10] &); f[m = m0]; Print[m, " ", f[m]]; f[m = m + dm]; While[Print[m, " ", f[m]]; RealDigits[f[m], 10, digits + 5] !=  RealDigits[f[m - dm], 10, digits + 5], m = m + dm]; B = Exp[-EulerGamma]*f[m]; RealDigits[B, 10, digits] // First (* Jean-François Alcover, Sep 20 2015 *)
  • PARI
    exp(-Euler) * prodeulerrat(1-1/((p-1)^2*(p+1))) \\ Amiram Eldar, Mar 09 2021

Extensions

More digits from Jean-François Alcover, Sep 20 2015

A335636 Expansion of e.g.f. Product_{k>0} 1/(1 - tan(x)^k / k).

Original entry on oeis.org

1, 1, 3, 13, 80, 560, 4972, 48060, 552632, 6813560, 95846728, 1435488184, 23855755040, 419889384096, 8048166402304, 162616435301824, 3531256457687168, 80497793591765120, 1953028123616286592, 49561115477458450560, 1328614915154244276224, 37134707962379971432448
Offset: 0

Views

Author

Seiichi Manyama, Oct 03 2020

Keywords

Crossrefs

Programs

  • Mathematica
    max = 21; Range[0, max]! * CoefficientList[Series[Product[1/(1 - Tan[x]^k/k), {k, 1, max}], {x, 0, max}], x] (* Amiram Eldar, Oct 03 2020 *)
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(1/prod(k=1, N, 1-tan(x)^k/k)))
    
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(exp(sum(i=1, N, sum(j=1, N\i, tan(x)^(i*j)/(i*j^i))))))

Formula

E.g.f.: exp( Sum_{i>0} Sum_{j>0} tan(x)^(i*j)/(i*j^i) ).
Conjecture: a(n) ~ A080130 * n * 2^(2*n+2) * n! / Pi^(n+2). - Vaclav Kotesovec, Oct 04 2020

A335638 Expansion of e.g.f. Product_{k>0} (1 + tan(x)^k / k).

Original entry on oeis.org

1, 1, 1, 7, 22, 190, 1170, 11646, 109520, 1289168, 16018064, 223757840, 3407971488, 55709905056, 998011344928, 18778681069024, 385316251841536, 8225863823985664, 189755182485906432, 4538893733746003968, 116147781156885837824, 3078530007519830730752, 86521073899573883088896
Offset: 0

Views

Author

Seiichi Manyama, Oct 03 2020

Keywords

Crossrefs

Programs

  • Mathematica
    max = 22; Range[0, max]! * CoefficientList[Series[Product[1 + Tan[x]^k/k, {k, 1, max}], {x, 0, max}], x] (* Amiram Eldar, Oct 03 2020 *)
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, 1+tan(x)^k/k)))
    
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(exp(sum(i=1, N, sum(j=1, N\i, (-1)^(i+1)*tan(x)^(i*j)/(i*j^i))))))

Formula

E.g.f.: exp( Sum_{i>0} Sum_{j>0} (-1)^(i+1)*tan(x)^(i*j)/(i*j^i) ).
Conjecture: a(n) ~ A080130 * 2^(2*n+1) * n! / Pi^(n+1). - Vaclav Kotesovec, Oct 04 2020

A368246 Number of permutations of [n] whose cycle minima sum to n.

Original entry on oeis.org

1, 1, 0, 2, 3, 8, 90, 384, 2940, 18864, 232848, 1919520, 23364000, 261282240, 3486637440, 48900116160, 746747164800, 11559784320000, 201817271416320, 3580457619916800, 68121866659875840, 1366946563510886400, 28802183294533017600, 627950275273991577600
Offset: 0

Views

Author

Alois P. Heinz, Dec 18 2023

Keywords

Comments

Also the number of permutations of [n] for which the sum of the positions of the left-to-right maxima is n: a(4) = 3: 2143, 3142, 3241; a(5) = 8: 31254, 32154, 41253, 41352, 42153, 42351, 43152, 43251.

Examples

			a(0) = 1: the empty permutation.
a(1) = 1: (1).
a(2) = 0.
a(3) = 2: (13)(2), (1)(23).
a(4) = 3: (124)(3), (142)(3), (12)(34).
a(5) = 8: (1235)(4), (1253)(4), (1325)(4), (1352)(4), (1523)(4), (1532)(4), (123)(45), (132)(45).
		

Crossrefs

Main diagonal of A143946.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          expand(b(n-1)*(x^n+n-1)))
        end:
    a:= n-> coeff(b(n), x, n):
    seq(a(n), n=0..23);

Formula

a(n) = A143946(n,n).
a(n) ~ c * (n-1)!, where c = 0.561459..., conjecture: c = exp(-gamma) = A080130, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Dec 29 2023

A242909 Decimal expansion of exp(-gamma/2).

Original entry on oeis.org

7, 4, 9, 3, 0, 6, 0, 0, 1, 2, 8, 8, 4, 4, 9, 0, 2, 3, 6, 0, 5, 8, 7, 1, 5, 1, 8, 6, 8, 5, 2, 6, 1, 5, 1, 1, 8, 3, 3, 3, 0, 1, 2, 2, 2, 0, 1, 6, 7, 2, 4, 9, 3, 0, 8, 9, 4, 3, 4, 1, 3, 8, 6, 5, 8, 6, 2, 9, 2, 2, 9, 8, 6, 4, 3, 8, 7, 3, 9, 7, 2, 6, 6, 5, 0, 2, 5, 6, 0, 2, 6, 3, 2, 8, 8, 3, 0, 7, 5, 4, 6
Offset: 0

Views

Author

Jean-François Alcover, May 26 2014

Keywords

Examples

			0.7493060012884490236058715186852615118333...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 3.10 Kneser-Mahler polynomial constants p. 234.

Crossrefs

Programs

  • Magma
    Exp(-EulerGamma(100)/2); // Stefano Spezia, Dec 10 2024
  • Mathematica
    RealDigits[Exp[-EulerGamma/2], 10, 101] // First

Formula

Lim_(m->oo) M(z_1, z_2, ..., z_m)/sqrt(m), where M is Mahler's measure for multivariate polynomials.

A244274 Decimal expansion of e*gamma, the product of Euler number and Euler-Mascheroni constant.

Original entry on oeis.org

1, 5, 6, 9, 0, 3, 4, 8, 5, 3, 0, 0, 3, 7, 4, 2, 2, 8, 5, 0, 7, 9, 9, 0, 7, 8, 4, 9, 1, 2, 3, 1, 5, 1, 1, 9, 2, 3, 0, 7, 2, 4, 2, 9, 0, 7, 5, 8, 8, 8, 9, 4, 9, 0, 8, 6, 5, 6, 6, 5, 4, 2, 6, 1, 4, 1, 2, 6, 1, 5, 2, 0, 6, 6, 8, 2, 9, 2, 4, 3, 0, 0, 5, 0, 6, 4, 9, 5, 5, 3, 8, 0, 4, 7, 9, 4, 3, 9, 9, 6, 9, 2, 3, 4, 1
Offset: 1

Views

Author

Stanislav Sykora, Jun 28 2014

Keywords

Examples

			1.569034853003742285079907849123151192307242907588894908656654...
		

Crossrefs

Programs

  • Magma
    R:= RealField(100); Exp(1)*EulerGamma(R); // G. C. Greubel, Aug 30 2018
  • Mathematica
    RealDigits[E*EulerGamma,10,120][[1]] (* Harvey P. Dale, Jan 01 2015 *)
  • PARI
    exp(1)*Euler
    

A246499 Decimal expansion of zeta(2)/exp(gamma), gamma being the Euler-Mascheroni constant.

Original entry on oeis.org

9, 2, 3, 5, 6, 3, 8, 3, 1, 6, 7, 4, 1, 8, 1, 3, 8, 2, 3, 2, 3, 5, 0, 9, 9, 5, 3, 9, 8, 7, 7, 0, 3, 9, 1, 6, 8, 4, 6, 9, 3, 1, 9, 6, 3, 2, 6, 1, 1, 1, 6, 3, 2, 5, 2, 0, 3, 5, 9, 5, 8, 3, 1, 6, 0, 2, 9, 7, 2, 3, 4, 3, 0, 5, 8, 2, 6, 0, 4, 8, 0, 9, 0, 9, 1, 2, 4, 9, 7, 7, 5, 0, 5, 2, 6, 5, 6, 2, 9, 8, 7, 9, 1, 5, 2
Offset: 0

Views

Author

Stanislav Sykora, Nov 14 2014

Keywords

Comments

It follows from Mertens theorem that this constant is the limit for large m of log(prime(m))*Product_{k=1..m} 1/(1 + 1/prime(k)).

Examples

			0.9235638316741813823235099539877039168469319632611163252035958316...
		

Crossrefs

Programs

  • Magma
    R:=RealField(100); Pi(R)^2/(6*Exp(EulerGamma(R))); // G. C. Greubel, Aug 30 2018
  • Mathematica
    RealDigits[Zeta[2]/E^EulerGamma, 10, 100][[1]] (* Alonso del Arte, Nov 14 2014 *)
  • PARI
    Pi^2/6/exp(Euler)
    

Formula

Equals Pi^2/(6*exp(gamma)).
Equals lim_{m->infinity} log(prime(m))*Product_{k=1..m} 1/(1 + 1/prime(k)).
Equals A013661/A073004. - Michel Marcus, Nov 18 2014

A370689 Numerator of sigma(phi(n))/phi(sigma(n)), where sigma is the sum of the divisors function and phi is the Euler totient function.

Original entry on oeis.org

1, 1, 3, 1, 7, 3, 3, 7, 1, 7, 9, 7, 14, 3, 15, 1, 31, 1, 39, 5, 7, 3, 9, 15, 7, 7, 39, 7, 7, 5, 9, 31, 21, 31, 15, 7, 91, 39, 5, 31, 15, 7, 24, 7, 5, 3, 9, 31, 8, 7, 21, 10, 49, 39, 15, 15, 91, 7, 45, 31, 28, 9, 91, 1, 31, 7, 9, 7, 21, 5, 6, 5, 65, 91, 3, 91, 21
Offset: 1

Views

Author

Amiram Eldar, Feb 27 2024

Keywords

Examples

			Fractions begin with: 1, 1/2, 3/2, 1/2, 7/2, 3/4, 3, 7/8, 1, 7/6, 9/2, 7/12, ...
		

Crossrefs

Cf. A000010, A000203, A033632, A062401, A062402, A065395, A066930, A289336, A073858 (positions of 1's), A289412, A370690 (denominators).

Programs

  • Mathematica
    Table[DivisorSigma[1, EulerPhi[n]]/EulerPhi[DivisorSigma[1, n]], {n, 1, 100}] // Numerator
  • PARI
    a(n) = {my(f = factor(n)); numerator(sigma(eulerphi(f)) / eulerphi(sigma(f)));}

Formula

Let f(n) = a(n)/A370690(n) = A062402(n)/A062401(n).
Formulas from De Koninck and Luca (2007):
lim sup_{n->oo} f(n)/log_2(n)^2 = exp(2*gamma) (A091724).
lim inf_{n->oo} f(n)/log_2(n)^2 = delta exists, and exp(-gamma)/40 <= delta <= 2*exp(-gamma).
Sum_{k=1..n} f(k) = c * exp(2*gamma) * log_3(n)^2 * n + O(n * log_3(n)^(3/2)), where c = Product_{p prime} (1 - 3/(p*(p + 1)) + 1/(p^2*(p + 1)) + ((p-1)^3/p^2)*Sum_{k>=3} 1/(p^k-1)) = 0.45782563109026414241... .

A061091 Number of k with 1 <= k <= n relatively prime to phi(k).

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 21, 21, 21, 21, 21, 21, 22, 22, 23, 23, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 28
Offset: 1

Views

Author

Frank Ellermann, May 29 2001

Keywords

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 115-119.

Crossrefs

Partial sums of A297086.
Cf. A000010 (phi), A001620 (gamma), A003277, A073004, A080130.

Programs

  • Mathematica
    s[n_] := Boole[CoprimeQ[n, EulerPhi[n]]]; Accumulate[Array[s, 100]]  (* Amiram Eldar, Dec 10 2024 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k, eulerphi(k)) == 1) \\ Charles R Greathouse IV, Jan 29 2013 (corrected by Iain Fox, Dec 25 2017)
    
  • PARI
    list(lim) = {my(s = 0); for(k = 1, lim, s += gcd(k, eulerphi(k)) == 1; print1(s, ", "));} \\ Amiram Eldar, Dec 10 2024

Formula

Limit_{n->oo} a(n) * log(log(log(n))) / n = 1/exp(gamma).
a(n) = Sum_{k=1..n} gcd(k, phi(k)) = 1.
a(1) = 1; a(n) = a(n-1) + A297086(n). - Iain Fox, Dec 25 2017

A215640 Sum of divisors of colossally abundant numbers.

Original entry on oeis.org

3, 12, 28, 168, 360, 1170, 9360, 19344, 232128, 3249792, 6604416, 20321280, 104993280, 1889879040, 37797580800, 907141939200, 1828682956800, 54860488704000, 1755535638528000, 12508191424512000, 37837279059148800, 1437816604247654400, 60388297378401484800
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 18 2012

Keywords

Examples

			6 is the second colossally abundant number. Divisors of 6 are 1, 2, 3, 6, so a(2) = 1 + 2 + 3 + 6 = 12.
		

Crossrefs

Programs

  • Mathematica
    lst1 = {2}; lst2 = {}; maxN = 23; p = 1; pFactor[f_List] := Module[{p = f[[1]], k = f[[2]]}, N[Log[(p^(k + 2) - 1)/(p^(k + 1) - 1)]/Log[p]] - 1]; f = {{2, 1}, {3, 0}}; primes = 1; x = Table[pFactor[f[[i]]], {i, primes + 1}]; For[n = 2, n <= maxN, n++, i = Position[x, Max[x]][[1, 1]]; AppendTo[lst1, f[[i, 1]]]; f[[i, 2]]++; If[i > primes, primes++; AppendTo[f, {Prime[i + 1], 0}]; AppendTo[x, pFactor[f[[-1]]]]]; x[[i]] = pFactor[f[[i]]]]; Do[p = p*lst1[[n]]; AppendTo[lst2, DivisorSigma[1, p]], {n, maxN}]; lst2 (* Most of the code is from T. D. Noe *)

Formula

a(n) = A000203(A004490(n)).
Previous Showing 11-20 of 32 results. Next