cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A139669 Number of isomorphism classes of finite groups of order 11*2^n.

Original entry on oeis.org

1, 2, 4, 12, 42, 195, 1387, 19324, 1083472
Offset: 0

Views

Author

Anthony D. Elmendorf (aelmendo(AT)calumet.purdue.edu), Jun 12 2008

Keywords

Comments

This appears to be the smallest possible number of groups of order q*2^n for an odd number q.
Apparently, a(n) is also the number of isomorphism classes of finite groups of order 19*2^n and, more generally, of order p*2^n for primes p such that p is congruent to 3 modulo 4 and p+1 is not a power of 2.
Comment from Miles Englezou, Sep 26 2024: (Start)
The comment above which starts "Apparently, ... power of 2." is not true. (For a proof see the Miles Englezou link). However, it is true that a(0) to a(8) are the smallest possible number of groups of order q*2^n for an odd number q, and this can be generalized in the way stated below. (For further details see the Miles Englezou link).
A correct generalization of the 9 terms:
The number of groups of order q*2^n is the least possible for prime q such that q == 3 (mod 4) and where the least 2^m such that 2^m == 1 (mod q) is greater than 2^n. Or put another way, if A014664(A080148(n)) > n, then for q = A000040(A080148(n)) the number of groups of order q*2^n is the least possible. (End)

Examples

			a(2) is the number of groups of order 11*2^2=44, which is 4 and also the number of groups of order 19*2^2=76, 23*2^2=92, etc.
		

References

  • J. H. Conway et al., The Symmetries of Things, Peters, 2008, p. 206.

Crossrefs

Programs

  • Maple
    A139669 := n -> GroupTheory[NumGroups](11*2^n);

Formula

a(n) = A000001(11*2^n). - Max Alekseyev, Apr 26 2010

Extensions

a(8) from Max Alekseyev, Dec 24 2014

A081728 Length of periods of Euler numbers modulo prime(n).

Original entry on oeis.org

1, 2, 2, 6, 10, 6, 8, 18, 22, 14, 30, 18, 20, 42, 46, 26, 58, 30, 66, 70, 36, 78, 82, 44, 48, 50, 102, 106, 54, 56, 126, 130, 68, 138, 74, 150, 78, 162, 166, 86, 178, 90, 190, 96, 98, 198, 210, 222, 226, 114, 116, 238, 120, 250, 128, 262, 134, 270, 138, 140, 282, 146
Offset: 1

Views

Author

Benoit Cloitre, Apr 06 2003

Keywords

Comments

As proved by Kummer, if the actual signed Euler numbers (A122045) are used, then the period is prime(n)-1 for n>1. - T. D. Noe, Mar 16 2007

Examples

			A000364 modulo 5=prime(3) gives : 1,1,0,1,0,1,0,1,0,1,0,... with period (1,0) of length 2, hence a(3)=2.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{p = Prime[n], t, d = Divisors[p - 1], dk, k = 1},t = Mod[Table[Abs@EulerE[2i], {i, 2, p}], p];While[dk = d[[k]];Nand @@ Equal @@@ Partition[Partition[t, dk], 2, 1], k++ ];dk];Array[f, 63] (* Ray Chandler, Mar 15 2007 *)

Formula

a(n)=prime(n)-1 if prime(n) == 2 or 3 (mod 4)

Extensions

More terms from John W. Layman, Jul 29 2005
Extended by Ray Chandler, Mar 15 2007

A129842 Primes p such that (p^2 - 3p - 2)/2 is prime.

Original entry on oeis.org

7, 11, 19, 23, 31, 43, 47, 67, 79, 83, 107, 127, 151, 167, 199, 211, 227, 239, 251, 271, 283, 307, 359, 419, 431, 439, 443, 467, 479, 523, 547, 563, 587, 599, 643, 647, 719, 743, 827, 859, 883, 887, 947, 991, 1031, 1039, 1103, 1171, 1259, 1303, 1399, 1423
Offset: 1

Views

Author

J. M. Bergot, May 22 2007

Keywords

Comments

These primes are all of the form 4k+3 (cf. A002145, A080148). - R. J. Mathar, Jun 08 2007

Examples

			For p = 31, one half of 31^2 - 3*31 - 2 equals 433, which is prime.
		

Programs

  • Maple
    a:=proc(n) local b: b:=ithprime(n): if isprime((b^2-3*b-2)/2)=true then b else fi end: seq(a(n),n=1..300); # Emeric Deutsch, May 25 2007
    isA129842 := proc(p) if isprime(p) then isprime((p^2-3*p-2)/2) ; else false ; fi ; end: for n from 1 to 880 do p := ithprime(n) : if isA129842(p) then printf("%d, ",p) ; fi ; od : # R. J. Mathar, Jun 08 2007
  • Mathematica
    Select[Prime[Range[2, 224]], PrimeQ[(#^2 - 3*# - 2)/2] &] (* Stefan Steinerberger, Jun 23 2007 *)

Extensions

More terms from Emeric Deutsch and R. J. Mathar, May 25 2007

A228432 Sum_{i=1..floor(prime(n)/4)} floor(sqrt(i*prime(n))).

Original entry on oeis.org

0, 0, 2, 2, 7, 14, 24, 25, 37, 70, 71, 114, 140, 143, 170, 234, 274, 310, 357, 399, 444, 498, 552, 660, 784, 850, 856, 926, 990, 1064, 1310, 1395, 1564, 1574, 1850, 1859, 2054, 2173, 2277, 2494, 2623, 2730, 2986, 3104, 3234, 3246, 3656, 4085, 4235, 4370
Offset: 1

Views

Author

Michel Marcus, Nov 11 2013

Keywords

Comments

If p = prime(n) in A002145 and n>3, or said differently, if n in A080148 and n>1, then a(n) = A081115(n).

Examples

			For n=7, p=17 and a(7) = floor(sqrt(17)) + floor(sqrt(34)) + floor(sqrt(51)) + floor(sqrt(68)) = 4+5+7+8 = 24.
		

Crossrefs

Programs

  • Mathematica
    Table[p = Prime[n]; Sum[Floor[Sqrt[i*p]], {i, Floor[p/4]}], {n, 100}] (* T. D. Noe, Nov 13 2013 *)
  • PARI
    a(n) = p = prime(n); sum(i=1, p\4, sqrtint(i*p));

A249132 Smallest noncomposite k such that prime(n) is the largest prime factor of k^2+1, or 0 if no such k exists.

Original entry on oeis.org

1, 0, 2, 0, 0, 5, 13, 0, 0, 17, 0, 31, 73, 0, 0, 23, 0, 11, 0, 0, 173, 0, 0, 233, 463, 293, 0, 0, 251, 919, 0, 0, 37, 0, 193, 0, 443, 0, 0, 599, 0, 19, 0, 467, 211, 0, 0, 0, 0, 107, 89, 0, 659, 0, 241, 0, 2503, 0, 337, 53, 0, 3671, 0, 0
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 22 2014

Keywords

Comments

a(A080148(m)) = 0. - Joerg Arndt, Oct 22 2014

Examples

			a(1)=1 is in this sequence because 1 is in A008578 and the largest prime factor of 1^2+1 = 2 is prime(1).
		

Crossrefs

Programs

  • Maple
    A249132:= proc(n) local p,i,k,a,b;
       p:= ithprime(n);
       if p mod 4 = 3 then return 0 fi;
       a:= numtheory:-msqrt(-1,p);
       if a < p/2 then b:= p-a
       else b:= a; a:= p-a
       fi;
       for i from 0 do
        for k in [a+i*p,b+i*p] do
          if isprime(k) and p = max(numtheory:-factorset(k^2+1)) then
            return(k)
          fi
        od
       od
    end proc:
    1,seq(A249132(n),n=2..100); # Robert Israel, Nov 10 2014
  • Mathematica
    a249132[n_Integer] := Module[{t = Table[0, {n}], k, s, p}, Do[If[Mod[Prime[k], 4] == 3, t[[k]] = -1], {k, n}]; k = 0; While[Times @@ t == 0, k++; s = FactorInteger[k^2 + 1][[-1, 1]]; p = PrimePi[s]; If[p <= n && t[[p]] == 0 && ! CompositeQ[k], t[[p]] = k]]; t /. -1 -> 0]; a249132[120] (* Michael De Vlieger, Nov 11 2014, adapted from A223702 *)

A120311 Numbers k such that pi(k) == 0 (mod 4), where pi() = A000720, and such that prime(k) == 3 (mod 4).

Original entry on oeis.org

8, 9, 19, 20, 22, 38, 39, 54, 56, 58, 72, 90, 91, 92, 93, 94, 95, 96, 107, 131, 132, 133, 153, 154, 155, 156, 173, 175, 177, 193, 195, 224, 225, 239, 240, 266, 281, 282, 311, 340, 344, 346, 360, 363, 364, 365, 383, 385, 386, 387
Offset: 1

Views

Author

Roger L. Bagula, Jun 20 2006

Keywords

Crossrefs

Cf. A000720. Intersection of A080148 and A120309.

Programs

  • Mathematica
    a = Flatten[Table[If[Mod[PrimePi[n], 4] == 0&& Mod[Prime[n], 4] -3 == 0, n, {}], {n, 1, 200}]]
    Select[Range[400],Mod[PrimePi[#],4]==0&&Mod[Prime[#],4]==3&] (* Harvey P. Dale, Apr 17 2019 *)

Extensions

Edited and more terms added by Michel Marcus, Jun 01 2013
Offset corrected by Michel Marcus, Feb 10 2021
Previous Showing 11-16 of 16 results.