cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 43 results. Next

A164368 Primes p with the property: if q is the smallest prime > p/2, then a prime exists between p and 2q.

Original entry on oeis.org

2, 11, 17, 29, 41, 47, 59, 67, 71, 97, 101, 107, 109, 127, 137, 149, 151, 167, 179, 181, 191, 197, 227, 229, 233, 239, 241, 263, 269, 281, 283, 307, 311, 347, 349, 367, 373, 401, 409, 419, 431, 433, 439, 461, 487, 491, 503, 521, 569, 571, 587, 593, 599, 601, 607
Offset: 1

Views

Author

Vladimir Shevelev, Aug 14 2009

Keywords

Comments

The Ramanujan primes possess the following property:
If p = prime(n) > 2, then all numbers (p+1)/2, (p+3)/2, ..., (prime(n+1)-1)/2 are composite.
The sequence equals all primes with this property, whether Ramanujan or not.
All Ramanujan primes A104272 are in the sequence.
Every lesser of twin primes (A001359), beginning with 11, is in the sequence. - Vladimir Shevelev, Aug 31 2009
109 is the first non-Ramanujan prime in this sequence.
A very simple sieve for the generation of the terms is the following: let p_0=1 and, for n>=1, p_n be the n-th prime. Consider consecutive intervals of the form (2p_n, 2p_{n+1}), n=0,1,2,... From every interval containing at least one prime we remove the last one. Then all remaining primes form the sequence. Let us demonstrate this sieve: For p_n=1,2,3,5,7,11,... consider intervals (2,4), (4,6), (6,10), (10,14), (14,22), (22,26), (26,34), ... . Removing from the set of all primes the last prime of each interval, i.e., 3,5,7,13,19,23,31,... we obtain 2,11,17,29, etc. - Vladimir Shevelev, Aug 30 2011
This sequence and A194598 are the mutually wrapping up sequences:
A194598(1) <= a(1) <= A194598(2) <= a(2) <= ...
From Peter Munn, Oct 30 2017: (Start)
The sequence is the list of primes p = prime(k) such that there are no primes between prime(k)/2 and prime(k+1)/2. Changing "k" to "k-1" and therefore "k+1" to "k" produces a definition very similar to A164333's: it differs by prefixing an initial term 3. From this we get a(n+1) = prevprime(A164333(n)) = A151799(A164333(n)) for n >= 1.
The sequence is the list of primes that are not the largest prime less than 2*prime(k) for any k, so that - as a set - it is the complement relative to A000040 of the set of numbers in A059788.
{{2}, A166252, A166307} is a partition.
(End)

Examples

			2 is in the sequence, since then q=2, and there is a prime 3 between 2 and 4. - _N. J. A. Sloane_, Oct 15 2009
		

Crossrefs

Cf. Ramanujan primes, A104272, and related sequences: A164288, A080359, A164294, A193507, A194184, A194186.
A001359, A166252, A166307 are subsets.
Cf. A001262, A001567, A062568, A141232 (all relate to pseudoprimes to base 2).

Programs

  • Maple
    a:= proc(n) option remember; local q, k, p;
          k:= nextprime(`if`(n=1, 1, a(n-1)));
          do q:= nextprime(floor(k/2));
             p:= nextprime(k);
             if p<2*q then break fi;
             k:= p
          od; k
        end:
    seq(a(n), n=1..55);  # Alois P. Heinz, Aug 30 2011
  • Mathematica
    Reap[Do[q=NextPrime[p/2]; If[PrimePi[2*q] != PrimePi[p], Sow[p]], {p, Prime[Range[100]]}]][[2, 1]]
    (* Second program: *)
    fQ[n_] := PrimePi[ 2NextPrime[n/2]] != PrimePi[n];
    Select[ Prime@ Range@ 105, fQ]
  • PARI
    is(n)=nextprime(n+1)<2*nextprime(n/2) && isprime(n) \\ Charles R Greathouse IV, Apr 24 2015

Formula

As a set, this sequence = A000040 \ A059788 = A000040 \ prevprime(2*A000040) = A000040 \ A151799(A005843(A000040)). - Peter Munn, Oct 30 2017

Extensions

Definition clarified and simplified by Jonathan Sondow, Oct 25 2011

A056171 a(n) = pi(n) - pi(floor(n/2)), where pi is A000720.

Original entry on oeis.org

0, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 4, 4, 5, 5, 5, 4, 4, 4, 5, 4, 4, 4, 5, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 6, 7, 7, 8, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 10, 9, 9, 9, 9, 9, 10, 10, 10, 9, 10, 10, 10, 9, 9, 9, 10, 10, 10, 10, 10, 9, 9, 9, 10, 10
Offset: 1

Views

Author

Labos Elemer, Jul 27 2000

Keywords

Comments

Also, the number of unitary prime divisors of n!. A prime divisor of n is unitary iff its exponent is 1 in the prime power factorization of n. In general, gcd(p, n/p) = 1 or p. Here we count the cases when gcd(p, n/p) = 1.
A unitary prime divisor of n! is >= n/2, hence their number is pi(n) - pi(n/2). - Peter Luschny, Mar 13 2011
See also the references and links mentioned in A143227. - Jonathan Sondow, Aug 03 2008
From Robert G. Wilson v, Mar 20 2017: (Start)
First occurrence of k is at n = A080359(k).
The last occurrence of k is at n = A080360(k).
The number of times k appears is A080362(k). (End)
Lev Schnirelmann proved that for every n, a(n) > (1/log_2(n))*(n/3 - 4*sqrt(n)) - 1 - (3/2)*log_2(n). - Arkadiusz Wesolowski, Nov 03 2017

Examples

			10! = 2^8 * 3^2 * 5^2 * 7. The only unitary prime divisor is 7, so a(10) = 1.
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 214.

Crossrefs

Programs

  • Maple
    A056171 := proc(x)
         numtheory[pi](x)-numtheory[pi](floor(x/2)) ;
    end proc:
    seq(A056171(n),n=1..130) ; # N. J. A. Sloane, Sep 01 2015
    A056171 := n -> nops(select(isprime,[$iquo(n,2)+1..n])):
    seq(A056171(i),i=1..98); # Peter Luschny, Mar 13 2011
  • Mathematica
    s=0; Table[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; s, {k,100}]
    Table[PrimePi[n]-PrimePi[Floor[n/2]],{n,100}] (* Harvey P. Dale, Sep 01 2015 *)
  • PARI
    A056171=n->primepi(n)-primepi(n\2) \\ M. F. Hasler, Dec 31 2016
    
  • Python
    from sympy import primepi
    [primepi(n) - primepi(n//2) for n in range(1,151)] # Indranil Ghosh, Mar 22 2017
    
  • Sage
    [prime_pi(n)-prime_pi(floor(n/2)) for n in range(1,99)] # Stefano Spezia, Apr 22 2025

Formula

a(n) = A000720(n) - A056172(n). - Robert G. Wilson v, Apr 09 2017
a(n) = A056169(n!). - Amiram Eldar, Jul 24 2024

Extensions

Definition simplified by N. J. A. Sloane, Sep 01 2015

A166251 Isolated primes: Primes p such that there is no other prime in the interval [2*prevprime(p/2), 2*nextprime(p/2)].

Original entry on oeis.org

5, 7, 23, 37, 79, 83, 89, 163, 211, 223, 257, 277, 317, 331, 337, 359, 383, 389, 397, 449, 457, 467, 479, 541, 547, 557, 563, 631, 673, 701, 709, 761, 787, 797, 839, 863, 877, 887, 919, 929, 977, 1129, 1181, 1201, 1213, 1237, 1283, 1307, 1327, 1361, 1399, 1409
Offset: 1

Views

Author

Vladimir Shevelev, Oct 10 2009, Oct 14 2009

Keywords

Comments

Other formulation: Suppose a prime p >= 5 lies in the interval (2p_k, 2p_(k+1)), where p_n is the n-th prime; p is called isolated if the interval (2p_k, 2p_(k+1)) does not contain any other primes.
The sequence is connected with the following classification of primes: The first two primes 2,3 form a separate set of primes; let p >= 5 be in interval(2p_k, 2p_(k+1)), then 1)if in this interval there are primes only more than p, then p is called a right prime; 2) if in this interval there are primes only less than p, then p is called a left prime; 3) if in this interval there are prime more and less than p, then p is called a central prime; 4) if this interval does not contain other primes, then p is called an isolated prime. In particular, the right primes form sequence A166307 and all Ramanujan primes (A104272) more than 2 are either right or central primes; the left primes form sequence A182365 and all Labos primes (A080359) greater than 3 are either left or central primes.
From Peter Munn, Jun 01 2023: (Start)
The isolated primes are prime(k) such that k-1 and k occur as consecutive terms in A020900.
In the tree of primes described in A290183, the isolated primes label the nodes with no sibling nodes.
Conjecture: a(n)/A000040(n) is asymptotic to 9. This would follow from my conjectured asymptotic proportion of 1's in A102820 (the first differences of A020900).
(End)

Examples

			Since 2*17 < 37 < 2*19, and the interval (34, 38) does not contain other primes, 37 is an isolated prime.
		

Crossrefs

Programs

  • Haskell
    a166251 n = a166251_list !! (n-1)
    a166251_list = concat $ (filter ((== 1) . length)) $
       map (filter ((== 1) . a010051)) $
       zipWith enumFromTo a100484_list (tail a100484_list)
    -- Reinhard Zumkeller, Apr 27 2012
    
  • Mathematica
    isolatedQ[p_] := p == NextPrime[2*NextPrime[p/2, -1]] && p == NextPrime[2*NextPrime[p/2], -1]; Select[Prime /@ Range[300], isolatedQ] (* Jean-François Alcover, Nov 29 2012, after M. F. Hasler *)
  • PARI
    is_A166251(n)={n==nextprime(2*precprime(n\2)) & n==precprime(2*nextprime(n/2))}  \\ M. F. Hasler, Oct 05 2012

Extensions

Edited by N. J. A. Sloane, Oct 15 2009
More terms from Alois P. Heinz, Apr 26 2012
Given terms double-checked with new PARI code by M. F. Hasler, Oct 05 2012

A193507 Ramanujan primes of the second kind: a(n) is the smallest prime such that if prime x >= a(n), then pi(x) - pi(x/2) >= n, where pi(x) is the number of primes <= x.

Original entry on oeis.org

2, 3, 13, 19, 31, 43, 53, 61, 71, 73, 101, 103, 109, 131, 151, 157, 173, 181, 191, 229, 233, 239, 241, 251, 269, 271, 283, 311, 313, 349, 353, 373, 379, 409, 419, 421, 433, 439, 443, 463, 491, 499, 509, 571, 577, 593, 599, 601, 607, 613, 643, 647, 653, 659
Offset: 1

Views

Author

Vladimir Shevelev, Aug 18 2011

Keywords

Comments

Apparently A168425 and the 2. - R. J. Mathar, Aug 25 2011
An odd prime p is in the sequence iff the previous prime is Ramanujan. The Ramanujan primes and the Ramanujan primes of the second kind are the mutually wrapping up sequences: a(1)<=R_1<=a(2)<=R_2<=a(3)<=R_3<=.... . - Vladimir Shevelev, Aug 29 2011
All terms of the sequence are in A194598. - Vladimir Shevelev, Aug 30 2011

Examples

			Since R_2=11 (see A104272), then for x >= 11, we have pi(x) - pi(x/2) >= 2. However, if to consider only prime x, then we see that, for x=7,5,3, pi(x) - pi(x/2)= 2, but pi(2) - pi(1)= 1. Therefore, already for prime x>=3, we have pi(x) - pi(x/2) >= 2. Thus a(2)=3.
		

Crossrefs

Cf. A104272 (Ramanujan primes).

Programs

  • Mathematica
    nn = 120; (* nn=120 returns 54 terms *)
    R = Table[0, {nn}]; s = 0;
    Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s < nn, R[[s + 1]] = k], {k, Prime[3 nn]}];
    A104272 = R + 1;
    Join[{2}, Select[Prime[Range[nn]], MemberQ[A104272, NextPrime[#, -1]]&]] (* Jean-François Alcover, Nov 07 2018, after T. D. Noe in A104272 *)

Formula

A080359(n) <= a(n) <= A104272(n) = R_n (Cf. A194184, A194186).
a(n)>p_(2*n-1); a(n)~p_{2n} (Cf. properties of R_n in A104272 and the above comment). - Vladimir Shevelev, Aug 28 2011

A164333 Primes prime(k) such that all integers in the interval [(prime(k-1)+1)/2, (prime(k)-1)/2] are composite numbers.

Original entry on oeis.org

13, 19, 31, 43, 53, 61, 71, 73, 101, 103, 109, 113, 131, 139, 151, 157, 173, 181, 191, 193, 199, 229, 233, 239, 241, 251, 269, 271, 283, 293, 311, 313, 349, 353, 373, 379, 409, 419, 421, 433, 439, 443, 463, 491, 499, 509, 523, 571, 577, 593, 599, 601, 607, 613, 619, 643
Offset: 1

Views

Author

Vladimir Shevelev, Aug 13 2009

Keywords

Comments

Let p_k be the k-th prime. A prime p is in the sequence iff the interval of the form (2p_k, 2p_(k+1)), containing p, also contains a prime less than p. The sequence is connected with the following classification of primes: the first two primes 2,3 form a separate set of primes; let p >= 5 be in the interval (2p_k, 2p_(k+1)), then 1) if in this interval there are only primes greater than p, then p is called a right prime; 2) if in this interval there are only primes less than p, then p is called a left prime; 3) if in this interval there are primes both greater and less than p, then p is called a central prime; 4) if this interval does not contain other primes, then p is called an isolated prime. In particular, the right primes form sequence A166307, and all Ramanujan primes (A104272) greater than 2 are either right or central primes; the left primes form sequence A182365, and all Labos primes (A080359) greater than 3 are either left or central primes; the central primes form A166252 and the isolated primes form A166251. [Vladimir Shevelev, Oct 10 2009] [Sequence reference updated by Peter Munn, Jun 01 2023]
Disjoint union of A166252 and A182365. - Peter Munn, Jun 01 2023 [an edited version of a contribution by Vladimir Shevelev in 2009]

Examples

			Let p=53. We see that 2*23<53<2*29. Since the interval (46, 58) contains prime 47<53 and does not contain any prime more than 53, then, by the considered classification 53 is left prime and it is in the sequence. [_Vladimir Shevelev_, Oct 10 2009]
		

Crossrefs

Programs

  • Maple
    isA164333 := proc(n)
            local i ;
            if isprime(n) and n > 3 then
                    for i from (prevprime(n)+1)/2 to (n-1)/2 do
                            if isprime(i) then
                                    return false;
                            end if;
                    end do;
                    return true;
            else
                    false;
            end if;
    end proc:
    for i from 2 to 700 do
            if isA164333(i) then
                    printf("%d,",i);
            end if;
    end do: # R. J. Mathar, Oct 29 2011
  • Mathematica
    kmax = 200; Select[Table[{(Prime[k - 1] + 1)/2, (Prime[k] - 1)/2}, {k, 3, kmax}], AllTrue[Range[#[[1]], #[[2]]], CompositeQ]&][[All, 2]]*2 + 1 (* Jean-François Alcover, Nov 14 2017 *)

Formula

{A080359} union {A164294} = {this sequence} union {2,3}. - Vladimir Shevelev, Oct 29 2011
A164368(2)A164368(3)A164368(4)Vladimir Shevelev, Oct 10 2009]

Extensions

Definition rephrased by R. J. Mathar, Oct 02 2009

A116533 a(1)=1, a(2)=2, for n > 2 if a(n-1) is prime, then a(n) = 2*a(n-1), otherwise a(n) = a(n-1) - 1.

Original entry on oeis.org

1, 2, 4, 3, 6, 5, 10, 9, 8, 7, 14, 13, 26, 25, 24, 23, 46, 45, 44, 43, 86, 85, 84, 83, 166, 165, 164, 163, 326, 325, 324, 323, 322, 321, 320, 319, 318, 317, 634, 633, 632, 631, 1262, 1261, 1260, 1259, 2518, 2517, 2516, 2515, 2514, 2513, 2512, 2511, 2510, 2509, 2508
Offset: 1

Views

Author

Rodolfo Kurchan, Mar 26 2006

Keywords

Comments

For n >= 3, using Wilson's theorem, a(n) = a(n-1) + (-1)^r*gcd(a(n-1), W), where W = A038507(a(n-1) - 1), and r=1 if gcd(a(n-1), W) = 1 and r=0 otherwise. - Vladimir Shevelev, Aug 07 2009

Crossrefs

Programs

  • Maple
    a[1]:=1: a[2]:=2: for n from 3 to 60 do if isprime(a[n-1])=true then a[n]:=2*a[n-1] else a[n]:=a[n-1]-1 fi od: seq(a[n],n=1..60); # Emeric Deutsch, Apr 02 2006

Extensions

More terms from Emeric Deutsch, Apr 02 2006

A163961 First differences of A116533.

Original entry on oeis.org

1, 2, -1, 3, -1, 5, -1, -1, -1, 7, -1, 13, -1, -1, -1, 23, -1, -1, -1, 43, -1, -1, -1, 83, -1, -1, -1, 163, -1, -1, -1, -1, -1, -1, -1, -1, -1, 317, -1, -1, -1, 631, -1, -1, -1, 1259, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2503, -1, -1, -1, 5003, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
Offset: 1

Views

Author

Vladimir Shevelev, Aug 07 2009, Aug 14 2009

Keywords

Comments

Ignoring the +-1 terms, we obtain the sequence of Bertrand's primes A006992. If we consider sequences A_i={a_i(n)}, i=1,2,... with the same constructions as A116533, but with initials a_1(1)=2, a_2(1)=11, a_3(1)=17,..., a_m(1)=A164368(m),..., then the union of A_1,A_2,... contains all primes.

Crossrefs

Programs

  • Maple
    A116533 := proc(n) option remember; if n <=2 then n; else if isprime(procname(n-1)) then 2*procname(n-1) ; else procname(n-1)-1 ; end if; end if; end proc:
    A163961 := proc(n) A116533(n+1)-A116533(n) ; end proc: # R. J. Mathar, Sep 03 2011
  • Mathematica
    Differences@ Prepend[NestList[If[PrimeQ@ #, 2 #, # - 1] &, 2, 90], 1] (* Michael De Vlieger, Dec 06 2018 *)
  • PARI
    a116533(n) = if(n==1, 1, if(n==2, 2, if(ispseudoprime(a116533(n-1)), 2*a116533(n-1), a116533(n-1)-1)))
    a(n) = a116533(n+1)-a116533(n) \\ Felix Fröhlich, Dec 06 2018
    
  • PARI
    lista(nn) = {va = vector(nn); va[1] = 1; va[2] = 2; for (n=3, nn, va[n] = if (isprime(va[n-1]), 2*va[n-1], va[n-1]-1);); vector(nn-1, n, va[n+1] - va[n]);} \\ Michel Marcus, Dec 07 2018

A163963 First differences of A080735.

Original entry on oeis.org

1, 2, 1, 5, 1, 11, 1, 23, 1, 47, 1, 1, 1, 97, 1, 1, 1, 197, 1, 1, 1, 397, 1, 1, 1, 797, 1, 1, 1, 1597, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3203, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6421, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12853, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 25717, 1, 1, 1, 51437, 1, 1, 1
Offset: 1

Views

Author

Vladimir Shevelev, Aug 07 2009

Keywords

Comments

Ignoring the 1 terms we obtain A055496. If we consider sequences A_i={a_i(n)}, i=1,2,... with the same constructions as A080735, but with initials a_1(1)=2, a_2(1)=3, a_3(1)=13,..., a_m(1)=A080359(m),..., then the union of A_1,A_2,... contains all primes.

Crossrefs

Programs

  • Maple
    A080735 := proc(n) option remember; local p ; if n = 1 then 1; else p := procname(n-1) ; if isprime(p) then 2*p; else p+1 ; end if; end if; end proc: A163963 := proc(n) A080735(n+1)-A080735(n) ; end: seq(A163963(n),n=1..100) ; # R. J. Mathar, Nov 05 2009
  • Mathematica
    Differences@ NestList[If[PrimeQ@ #, 2 #, # + 1] &, 1, 87] (* Michael De Vlieger, Dec 06 2018, after Harvey P. Dale at A080735 *)
  • PARI
    lista(nn) = {my(va = vector(nn)); va[1] = 1; for (n=2, nn, va[n] = if (isprime(va[n-1]), 2*va[n-1], va[n-1]+1);); vector(nn-1, n, va[n+1] - va[n]);} \\ Michel Marcus, Dec 06 2018

Extensions

More terms from R. J. Mathar, Nov 05 2009

A060756 a(n) is the smallest number for which exactly n primes are bounded between a(n) and 2a(n) exclusively.

Original entry on oeis.org

1, 2, 4, 9, 10, 16, 22, 27, 34, 36, 40, 51, 52, 55, 57, 70, 82, 87, 91, 96, 99, 100, 120, 121, 126, 135, 136, 142, 147, 159, 175, 177, 187, 190, 205, 210, 216, 217, 220, 222, 232, 246, 250, 255, 262, 289, 297, 300, 301, 304, 309, 310, 324, 327, 330, 339, 342
Offset: 0

Views

Author

Lekraj Beedassy, Apr 23 2001

Keywords

Comments

a(n) is the first occurrence of n in A060715.

Examples

			a(10)=40 since ten primes,namely,41,43,47,53,59,61,67,71,73,79,first arise between 40 and its double.
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex)
    import Data.Maybe (mapMaybe)
    a060756 n = a060756_list !! n
    a060756_list = map (+ 1) $ mapMaybe (`elemIndex` a060715_list) [0..]
    -- Reinhard Zumkeller, Jan 05 2012

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 05 2001

A194658 a(n) is the maximal prime, such that for all primes x<=a(n) the number of primes in (x/2,x) is less than n.

Original entry on oeis.org

2, 11, 17, 29, 41, 47, 59, 67, 71, 97, 101, 107, 109, 137, 151, 167, 179, 181, 191, 197, 233, 239, 241, 263, 269, 281, 283, 311, 347, 349, 367, 373, 401, 409, 419, 431, 433, 439, 461, 487, 491, 503, 521, 571, 587, 593, 599, 601, 607, 617, 643, 647, 653
Offset: 1

Views

Author

Vladimir Shevelev, Sep 01 2011

Keywords

Comments

The next prime after a(n) is A080359(n+1).

Crossrefs

Subsequence of A164368.

Programs

  • Mathematica
    b[1] = 2; b[n_] := b[n] = Module[{x = b[n-1]}, While[PrimePi[x] - PrimePi[ Quotient[x, 2]] != n, x++]; x];
    a[n_] := NextPrime[b[n+1], -1];
    Array[a, 100] (* Jean-François Alcover, Nov 11 2018 *)

Formula

A080359(n) <= a(n) <= A104272(n).
Previous Showing 11-20 of 43 results. Next