cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 87 results. Next

A053754 If k is in the sequence then 2*k and 2*k+1 are not (and 0 is in the sequence); when written in binary k has an even number of bits (0 has 0 digits).

Original entry on oeis.org

0, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148
Offset: 1

Views

Author

Henry Bottomley, Apr 06 2000

Keywords

Comments

Runs of successive terms with same number of bits have length twice powers of 4 (A081294). [Clarified by Michel Marcus, Oct 21 2020]
The sequence A081294 counts compositions of even numbers - Gus Wiseman, Aug 12 2021
A031443 is a subsequence; A179888 is the intersection of this sequence and A032925. - Reinhard Zumkeller, Jul 31 2010
The lower and upper asymptotic densities of this sequence are 1/3 and 2/3, respectively. - Amiram Eldar, Feb 01 2021
From Gus Wiseman, Aug 10 2021: (Start)
Also numbers k such that the k-th composition in standard order (row k of A066099) has even sum. The terms and corresponding compositions begin:
0: () 2: (2) 8: (4)
3: (1,1) 9: (3,1)
10: (2,2)
11: (2,1,1)
12: (1,3)
13: (1,2,1)
14: (1,1,2)
15: (1,1,1,1)
The following pertain to compositions in standard order: A000120, A029837, A070939, A066099, A124767.
(End)

Crossrefs

Positions of even terms in A029837 with offset 0.
The complement (the odd version) is A053738, counted by A000302.
The version for Heinz numbers of partitions is A300061, counted by A058696.

Programs

  • Haskell
    a053754 n = a053754_list !! (n-1)
    a053754_list = 0 : filter (even . a070939) [1..]
    -- Reinhard Zumkeller, Apr 18 2015
    
  • Mathematica
    Select[Range[0, 150], EvenQ @ IntegerLength[#, 2] &] (* Amiram Eldar, Feb 01 2021 *)
  • PARI
    lista(nn) = {my(va = vector(nn)); for (n=2, nn, my(k=va[n-1]+1); while (#select(x->(x==k\2), va), k++); va[n] = k;); va;} \\ Michel Marcus, Oct 20 2020
    
  • PARI
    a(n) = n-1 + (1<Kevin Ryde, Apr 30 2021

Extensions

Offset corrected by Reinhard Zumkeller, Jul 30 2010

A135141 a(1)=1, a(p_n)=2*a(n), a(c_n)=2*a(n)+1, where p_n = n-th prime, c_n = n-th composite number.

Original entry on oeis.org

1, 2, 4, 3, 8, 5, 6, 9, 7, 17, 16, 11, 10, 13, 19, 15, 12, 35, 18, 33, 23, 21, 14, 27, 39, 31, 25, 71, 34, 37, 32, 67, 47, 43, 29, 55, 22, 79, 63, 51, 20, 143, 26, 69, 75, 65, 38, 135, 95, 87, 59, 111, 30, 45, 159, 127, 103, 41, 24, 287, 70, 53, 139, 151, 131, 77, 36, 271, 191
Offset: 1

Views

Author

Katarzyna Matylla, Feb 13 2008

Keywords

Comments

A permutation of the positive integers, related to A078442.
a(p) is even when p is prime and is divisible by 2^(prime order of p).
From Robert G. Wilson v, Feb 16 2008: (Start)
What is the length of the cycle containing 10? Is it infinite? The cycle begins 10, 17, 12, 11, 16, 15, 19, 18, 35, 29, 34, 43, 26, 31, 32, 67, 36, 55, 159, 1055, 441, 563, 100, 447, 7935, 274726911, 1013992070762272391167, ... Implementation in Mmca: NestList[a(AT)# &, 10, 26] Furthermore, it appears that any non-single-digit number has an infinite cycle.
Records: 1, 2, 4, 8, 9, 17, 19, 35, 39, 71, 79, 143, 159, 287, 319, 575, 639, 1151, 1279, 2303, 2559, 4607, 5119, 9215, 10239, 18431, 20479, 36863, 40959, 73727, 81919, 147455, 163839, 294911, 327679, 589823, 655359, ..., . (End)

Examples

			a(20) = 33 = 2*16 + 1 because 20 is 11th composite and a(11)=16. Or, a(20)=33=100001(bin). In other words it is a composite number, its index is a prime number, whose index is a prime....
		

Crossrefs

Cf. A246346, A246347 (record positions and values).
Cf. A227413 (inverse).
Cf. A071574, A245701, A245702, A245703, A245704, A246377, A236854, A237427 for related and similar permutations.

Programs

  • Haskell
    import Data.List (genericIndex)
    a135141 n = genericIndex a135141_list (n-1)
    a135141_list = 1 : map f [2..] where
       f x | iprime == 0 = 2 * (a135141 $ a066246 x) + 1
           | otherwise   = 2 * (a135141 iprime)
           where iprime = a049084 x
    -- Reinhard Zumkeller, Jan 29 2014
    
  • Mathematica
    a[1] = 1; a[n_] := If[PrimeQ@n, 2*a[PrimePi[n]], 2*a[n - 1 - PrimePi@n] + 1]; Array[a, 69] (* Robert G. Wilson v, Feb 16 2008 *)
  • Maxima
    /* Let pc = prime count (which prime it is), cc = composite count: */
    pc[1]:0;
    cc[1]:0;
    pc[2]:1;
    cc[4]:1;
    pc[n]:=if primep(n) then 1+pc[prev_prime(n)] else 0;
    cc[n]:=if primep(n) then 0 else if primep(n-1) then 1+cc[n-2] else 1+cc[n-1];
    a[1]:1;
    a[n]:=if primep(n) then 2*a[pc[n]] else 1+2*a[cc[n]];
    
  • PARI
    A135141(n) = if(1==n, 1, if(isprime(n), 2*A135141(primepi(n)), 1+(2*A135141(n-primepi(n)-1)))); \\ Antti Karttunen, Dec 09 2019
  • Python
    from sympy import isprime, primepi
    def a(n): return 1 if n==1 else 2*a(primepi(n)) if isprime(n) else 2*a(n - 1 - primepi(n)) + 1 # Indranil Ghosh, Jun 11 2017, after Mathematica code
    

Formula

a(n) = 2*A135141((A049084(n))*chip + A066246(n)*(1-chip)) + 1 - chip, where chip = A010051(n). - Reinhard Zumkeller, Jan 29 2014
From Antti Karttunen, Dec 09 2019: (Start)
A007814(a(n)) = A078442(n).
A070939(a(n)) = A246348(n).
A080791(a(n)) = A246370(n).
A054429(a(n)) = A246377(n).
A245702(a(n)) = A245703(n).
a(A245704(n)) = A245701(n). (End)

A329369 Number of permutations of {1,2,...,m} with excedance set constructed by taking m-i (0 < i < m) if b(i-1) = 1 where b(k)b(k-1)...b(1)b(0) (0 <= k < m-1) is the binary expansion of n.

Original entry on oeis.org

1, 1, 3, 1, 7, 3, 7, 1, 15, 7, 17, 3, 31, 7, 15, 1, 31, 15, 37, 7, 69, 17, 37, 3, 115, 31, 69, 7, 115, 15, 31, 1, 63, 31, 77, 15, 145, 37, 81, 7, 245, 69, 155, 17, 261, 37, 77, 3, 391, 115, 261, 31, 445, 69, 145, 7, 675, 115, 245, 15, 391, 31, 63, 1, 127, 63
Offset: 0

Views

Author

Mikhail Kurkov, Nov 12 2019

Keywords

Comments

Another version of A152884.
The excedance set of a permutation p of {1,2,...,m} is the set of indices i such that p(i) > i; it is a subset of {1,2,...,m-1}.
Great work on this subject was done by R. Ehrenborg and E. Steingrimsson, so most of the formulas given below are just their results translated into the language of the sequences which are related to the binary expansion of n.
Conjecture 1: equivalently, number of open tours by a biased rook on a specific f(n) X 1 board, which ends on a white cell, where f(n) = A070941(n) = floor(log_2(2n)) + 1 and cells are colored white or black according to the binary representation of 2n. A cell is colored white if the binary digit is 0 and a cell is colored black if the binary digit is 1. A biased rook on a white cell moves only to the left and otherwise moves only to the right. - Mikhail Kurkov, May 18 2021
Conjecture 2: this sequence is an inverse modulo 2 binomial transform of A284005. - Mikhail Kurkov, Dec 15 2021

Examples

			a(1) = 1 because the 1st excedance set is {m-1} and the permutations of {1,2,...,m} with such excedance set are 21, 132, 1243, 12354 and so on, i.e., for a given m we always have 1 permutation.
a(2) = 3 because the 2nd excedance set is {m-2} and the permutations of {1,2,...,m} with such excedance set are 213, 312, 321, 1324, 1423, 1432, 12435, 12534, 12543 and so on, i.e., for a given m we always have 3 permutations.
a(3) = 1 because the 3rd excedance set is {m-2, m-1} and the permutations of {1,2,...,m} with such excedance set are 231, 1342, 12453 and so on, i.e., for a given m we always have 1 permutation.
		

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember;  2^padic[ordp](n, 2) end:
    a:= proc(n) option remember; `if`(n=0, 1, (h-> a(h)+
         `if`(n::odd, 0, (t-> a(h-t)+a(n-t))(g(h))))(iquo(n, 2)))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Jan 30 2023
  • Mathematica
    a[n_] := a[n] = Which[n == 0, 1, OddQ[n], a[(n-1)/2], True, a[n/2] + a[n/2 - 2^IntegerExponent[n/2, 2]] + a[n - 2^IntegerExponent[n/2, 2]]];
    a /@ Range[0, 65] (* Jean-François Alcover, Feb 13 2020 *)
  • PARI
    upto(n) = my(A, v1); v1 = vector(n+1, i, 0); v1[1] = 1; for(i=1, n, v1[i+1] = v1[i\2+1] + if(i%2, 0, A = 1 << valuation(i/2, 2); v1[i/2-A+1] + v1[i-A+1])); v1 \\ Mikhail Kurkov, Jun 06 2024

Formula

a(2n+1) = a(n) for n >= 0.
a(2n) = a(n) + a(n - 2^f(n)) + a(2n - 2^f(n)) for n > 0 with a(0) = 1 where f(n) = A007814(n) (equivalent to proposition 2.1 at the page 286, see R. Ehrenborg and E. Steingrimsson link).
a(2^m*(2n+1)) = Sum_{k=0..m} binomial(m+1,k) a(2^k*n) = a(2^m*n) + a(2^(m-1)*(2n+1)) + a(2^(m-1)*(4n+1)) for m > 0, n >= 0 (equivalent to proposition 2.5 at the page 287, see R. Ehrenborg and E. Steingrimsson link).
a(2n) = a(2*g(n)) + a(2n - 2^h(n)) + a(2*g(n) + 2^h(n)) for n > 0 with a(0) = 1 where g(n) = A053645(n), h(n) = A063250(n) (equivalent to proposition 2.1 at the page 286, see R. Ehrenborg and E. Steingrimsson link).
a(2n) = 2*a(n + g(n)) + a(2*g(n)) for n > 0, floor(n/3) < 2^(floor(log_2(n))-1) (in other words, for 2^m + k where 0 <= k < 2^(m-1), m > 0) with a(0) = 1 (just a special case of the previous formula, because for 2^m + k where 0 <= k < 2^(m-1), m > 0 we have 2^h(n) = n - g(n)).
a(2n) = a(f(n,-1)) + a(f(n,0)) + a(f(n,1)) for n > 0 with a(0) = 1 where f(n,k) = 2*(f(floor(n/2),k) + n mod 2) + k*A036987(n) for n > 1 with f(1,k) = abs(k) (equivalent to a(2n) = a(2*g(n)) + a(2n - 2^h(n)) + a(2*g(n) + 2^h(n))).
a(n) = Sum_{j=0..2^wt(n) - 1} (-1)^(wt(n) - wt(j)) Product_{k=0..wt(n) - 1} (1 + wt(floor(j/2^k)))^T(n,k) for n > 0 with a(0) = 1 where wt(n) = A000120(n), T(n,k) = T(floor(n/2), k - n mod 2) for k > 0 with T(n,0) = A001511(n) (equivalent to theorem 6.3 at page 296, see R. Ehrenborg and E. Steingrimsson link). Here T(n, k) - 1 for k > 0 is the length of the run of zeros between k-th pair of ones from the right side in the binary expansion of n. Conjecture 1: this formula is equivalent to inverse modulo 2 binomial transform of A284005.
Sum_{k=0..2^n-1} a(k) = (n+1)! for n >= 0.
a((4^n-1)/3) = A110501(n+1) for n >= 0.
a(2^2*(2^n-1)) = A091344(n+1),
a(2^3*(2^n-1)) = A091347(n+1),
a(2^4*(2^n-1)) = A091348(n+1).
More generally, a(2^m*(2^n-1)) = a(2^n*(2^m-1)) = S(n+1,m) for n >= 0, m >= 0 where S(n,m) = Sum_{k=1..n} k!*k^m*Stirling2(n,k)*(-1)^(n-k) (equivalent to proposition 6.5 at the page 297, see R. Ehrenborg and E. Steingrimsson link).
Conjecture 2: a(n) = (1 + A023416(n))*a(g(n)) + Sum_{k=0..floor(log_2(n))-1} (1-R(n,k))*a(g(n) + 2^k*(1 - R(n,k))) for n > 1 with a(0) = 1, a(1) = 1, where g(n) = A053645(n) and where R(n,k) = floor(n/2^k) mod 2 (at this moment this is the only formula here, which is not related to R. Ehrenborg's and E. Steingrimsson's work and arises from another definition given above, exactly conjectured definition with a biased rook). Here R(n,k) is the (k+1)-th bit from the right side in the binary expansion of n. - Mikhail Kurkov, Jun 23 2021
From Mikhail Kurkov, Jan 23 2023: (Start)
The formulas below are not related to R. Ehrenborg's and E. Steingrimsson's work.
Conjecture 3: a(n) = A357990(n, 1) for n >= 0.
Conjecture 4: a(2^m*(2k+1)) = Sum_{i=1..wt(k) + 2} i!*i^m*A358612(k, i)*(-1)^(wt(k) - i) for m >= 0, k >= 0 where wt(n) = A000120(n).
Conjecture 5: a(2^m*(2^n - 2^p - 1)) = Sum_{i=1..n} i!*i^m*(-1)^(n - i)*((i - p + 1)*Stirling2(n, i) - Stirling2(n - p, i - p) + Sum_{j=0..p-2} (p - j - 1)*Stirling2(n - p, i - j)/j! Sum_{k=0..j} (i - k)^p*binomial(j, k)*(-1)^k) for n > 2, m >= 0, 0 < p < n - 1. Here we consider that Stirling2(n, k) = 0 for n >= 0, k < 0. (End)
Conjecture 6: a(2^m*n + q) = Sum_{i=A001511(n+1)..A000120(n)+1} A373183(n, i)*a(2^m*(2^(i-1)-1) + q) for n >= 0, m >= 0, q >= 0. Note that this formula is recursive for n != 2^k - 1. Also, it is not related to R. Ehrenborg's and E. Steingrimsson's work. - Mikhail Kurkov, Jun 05 2024
From Mikhail Kurkov, Jul 10 2024: (Start)
a(2^m*(2^n*(2k+1) - 1)) = Sum_{i=1..m+1} a(2^i*k)*(-1)^(m-i+1)*Sum_{j=i..m+1} j^n*Stirling1(j, i)*Stirling2(m+1, j) for m >= 0, n >= 0, k >= 0 with a(0) = 1.
Proof: start with a(2^m*(2n+1)) = Sum_{k=0..m} binomial(m+1,k) a(2^k*n) given above and rewrite it as a(2^m*(2^n*(2k+1) - 1)) = Sum_{i=0..m} binomial(m+1, i) a(2^i*(2^(n-1)*(2k+1) - 1)).
Then conjecture that a(2^m*(2^n*(2k+1) - 1)) = Sum_{i=1..m+1} a(2^i*k)*f(n, m, i). From that it is obvious that f(0, m, i) = [i = (m+1)].
After that use a(2^m*(2^n*(2k+1) - 1)) = Sum_{i=0..m} binomial(m+1, i) Sum_{j=1..i+1} a(2^j*k)*f(n-1, i, j) = Sum_{i=1..m+1} a(2^i*k) Sum_{j=i-1..m} binomial(m+1, j)*f(n-1, j, i). From that it is obvious that f(n, m, i) = Sum_{j=i-1..m} binomial(m+1, j)*f(n-1, j, i).
Finally, all we need is to show that basic conditions and recurrence for f(n, m, i) gives f(n, m, i) = (-1)^(m-i+1)*Sum_{j=i..m+1} j^n*Stirling1(j, i)*Stirling2(m+1, j) (see Max Alekseyev link).
a(2^m*(2k+1)) = a(2^(m-1)*k) + (m+1)*a(2^m*k) + Sum_{i=1..m-1} a(2^m*k + 2^i) for m > 0, k >= 0.
Proof: start with a(2^(m+1)*(2k+1)) = a(2^m*k) + (m+2)*a(2^(m+1)*k) + Sum_{i=1..m} a(2^(m+1)*k + 2^i).
Then use a(2^m*(4k+1)) = a(2^m*k) + (m+1)*a(2^(m+1)*k) + Sum_{i=1..m-1} a(2^(m+1)*k + 2^i).
From that we get a(2^(m+1)*(2k+1)) - a(2^m*k) - (m+2)*a(2^(m+1)*k) - a(2^(m+1)*k + 2^m) = a(2^m*(4k+1)) - a(2^m*k) - (m+1)*a(2^(m+1)*k).
Finally, a(2^(m+1)*(2k+1)) = a(2^(m+1)*k) + a(2^m*(2*k+1)) + a(2^m*(4k+1)) which agrees with the a(2^m*(2n+1)) = a(2^m*n) + a(2^(m-1)*(2n+1)) + a(2^(m-1)*(4n+1)) given above.
This formula can be considered as an alternative to a(2^m*(2n+1)) = Sum_{k=0..m} binomial(m+1,k) a(2^k*n). There are algorithms for both these formulas that allow you to calculate them without recursion. However, even though it is necessary to calculate binomial coefficients in the mentioned formula, the triple-looped algorithm for it still works faster (see Peter J. Taylor link).
It looks like you can also change v2 in the mentioned algorithm to vector with elements a(2^m*(2^(i+A007814(n+1)-1)-1) + q) to get a(2^m*n + q) instead of a(n). This may have common causes with formula that uses A373183 given above. (End)
From Mikhail Kurkov, Jan 27 2025: (Start)
The formulas below are not related to R. Ehrenborg's and E. Steingrimsson's work.
Conjecture 7: A008292(n+1,k+1) = Sum_{i=0..2^n-1} [A000120(i) = k]*a(i) for n >= 0, k >= 0.
Conjecture 8: a(2^m*(2^n*(2k+1)-1)) = Sum_{i=0..m} Sum_{j=0..m-i} Sum_{q=0..i} binomial(m-i,j)*(m-j+1)^n*a(2^(q+1)*k)*L(m,i,q)*(-1)^j for m >= 0, n > 0, k >= 0 where L(n,k,m) = W(n-m,k-m,m+1) for n > 0, 0 <= k < n, 0 <= m <= k and where W(n,k,m) = (k+m)*W(n-1,k,m) + (n-k)*W(n-1,k-1,m) + [m > 1]*W(n,k,m-1) for 0 <= k < n, m > 0 with W(0,0,m) = 1, W(n,k,m) = 0 for n < 0 or k < 0.
In particular, W(n, k, 1) = A173018(n, k), W(n, k, 2) = A062253(n, k), W(n, k, 3) = A062254(n, k) and W(n, k, 4) = A062255(n, k).
Conjecture 9: a(n) = b(n,wt(n)) for n >= 0 where b(2n+1,k) = b(n,k) + (wt(n)-k+2)*b(n,k-1), b(2n,k) = (wt(n)-k+1)*b(2n+1,k) for n > 0, k > 0 with b(n,0) = A341392(n) for n >= 0, b(0,k) = 0 for k > 0 and where wt(n) = A000120(n) (see A379817).
More generally, a(2^m*(2k+1)) = ((m+1)!)^2*b(k,wt(k)-m) - Sum_{j=1..m} Stirling1(m+2,j+1)*a(2^(j-1)*(2k+1)) for m >= 0, k >= 0. Here we also consider that b(n,k) = 0 for k < 0. (End)
Conjecture 10: if we change b(n,0) = A341392(n) given above to b(n,0) = A341392(n)*x^n, then nonzero terms of the resulting polynomials for b(n,wt(n)) form c(n,k) such that a(n) = Sum_{k=0..A080791(n)} c(n,k) for n >= 0 where c(n,k) = (Product_{i=0..k-1} (1 + 1/A000120(floor(n/2^(A000523(n)-i))))) * Sum_{j=max{0,k-A080791(n)+A080791(A053645(n))}..A080791(A053645(n))} c(A053645(n),j) for n > 0, k >= 0 with c(0,0) = 1, c(0,k) = 0 for k > 0. - Mikhail Kurkov, Jun 19 2025

A039004 Numbers whose base-4 representation has the same number of 1's and 2's.

Original entry on oeis.org

0, 3, 6, 9, 12, 15, 18, 24, 27, 30, 33, 36, 39, 45, 48, 51, 54, 57, 60, 63, 66, 72, 75, 78, 90, 96, 99, 102, 105, 108, 111, 114, 120, 123, 126, 129, 132, 135, 141, 144, 147, 150, 153, 156, 159, 165, 177, 180, 183, 189, 192, 195, 198, 201, 204, 207, 210, 216, 219
Offset: 1

Views

Author

Keywords

Comments

Numbers such that sum (-1)^k*b(k) = 0 where b(k)=k-th binary digit of n (see A065359). - Benoit Cloitre, Nov 18 2003
Conjecture: a(C(2n,n)-1) = 4^n - 1. (A000984 is C(2n,n)). - Gerald McGarvey, Nov 18 2007
From Russell Jay Hendel, Jun 23 2015: (Start)
We prove the McGarvey conjecture (A) a(e(n,n)-1) = 4^n-1, with e(n,m) = A034870(n,m) = binomial(2n,m), the even rows of Pascal's triangle. By the comment from Hendel in A034870, we have the function s(n,k) = #{n-digit, base-4 numbers with n-k more 1-digits than 2-digits}. As shown in A034870, (B) #s(n,k)= e(n,k) with # indicating cardinality, that is, e(n,k) = binomial(2n,k) gives the number of n-digit, base-4 numbers with n-k more 1-digits than 2-digits.
We now show that (B) implies (A). By definition, s(n,n) contains the e(n,n) = binomial(2n,n) numbers with an equal number of 1-digits and 2-digits. The biggest n-digit, base-4 number is 333...3 (n copies of 3). Since 333...33 has zero 1-digits and zero 2-digits it follows that 333...333 is a member of s(n,n) and hence it is the biggest member of s(n,n). But 333...333 (n copies of 3) in base 4 has value 4^n-1. Since A039004 starts with index 0 (that is, 0 is the 0th member of A039004), it immediately follows that 4^n-1 is the (e(n,n)-1)st member of A039004, proving the McGarvey conjecture. (End)
Also numbers whose alternating sum of binary expansion is 0, i.e., positions of zeros in A345927. These are numbers whose binary expansion has the same number of 1's at even positions as at odd positions. - Gus Wiseman, Jul 28 2021

Crossrefs

A subset of A001969 (evil numbers).
A base-2 version is A031443 (digitally balanced numbers).
Positions of 0's in A065359 and A345927.
Positions of first appearances are A086893.
The version for standard compositions is A344619.
A000120 and A080791 count binary digits, with difference A145037.
A003714 lists numbers with no successive binary indices.
A011782 counts compositions.
A030190 gives the binary expansion of each nonnegative integer.
A070939 gives the length of an integer's binary expansion.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A101211 lists run-lengths in binary expansion:
- row-lengths: A069010
- reverse: A227736
- ones only: A245563
A138364 counts compositions with alternating sum 0:
- bisection: A001700/A088218
- complement: A058622
A328594 lists numbers whose binary expansion is aperiodic.
A345197 counts compositions by length and alternating sum.

Programs

  • Fortran
    c See link in A139351.
  • Maple
    N:= 1000: # to get all terms up to N, which should be divisible by 4
    B:= Array(0..N-1):
    d:= ceil(log[4](N));
    S:= Array(0..N-1,[seq(op([0,1,-1,0]),i=1..N/4)]):
    for i from 1 to d do
      B:= B + S;
      S:= Array(0..N-1,i-> S[floor(i/4)]);
    od:
    select(t -> B[t]=0, [$0..N-1]); # Robert Israel, Jun 24 2015
  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[IntegerDigits[#,2]]==0&] (* Gus Wiseman, Jul 28 2021 *)
  • PARI
    for(n=0,219,if(sum(i=1,length(binary(n)),(-1)^i*component(binary(n),i))==0,print1(n,",")))
    

Formula

Conjecture: there is a constant c around 5 such that a(n) is asymptotic to c*n. - Benoit Cloitre, Nov 24 2002
That conjecture is false. The number of members of the sequence from 0 to 4^d-1 is binomial(2d,d) which by Stirling's formula is asymptotic to 4^d/sqrt(Pi*d). If Cloitre's conjecture were true we would have 4^d-1 asymptotic to c*4^d/sqrt(Pi*d), a contradiction. - Robert Israel, Jun 24 2015

A080100 a(n) = 2^(number of 0's in binary representation of n).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 2, 1, 8, 4, 4, 2, 4, 2, 2, 1, 16, 8, 8, 4, 8, 4, 4, 2, 8, 4, 4, 2, 4, 2, 2, 1, 32, 16, 16, 8, 16, 8, 8, 4, 16, 8, 8, 4, 8, 4, 4, 2, 16, 8, 8, 4, 8, 4, 4, 2, 8, 4, 4, 2, 4, 2, 2, 1, 64, 32, 32, 16, 32, 16, 16, 8, 32, 16, 16, 8, 16, 8, 8, 4, 32, 16, 16, 8, 16, 8, 8, 4, 16, 8, 8, 4, 8, 4
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 28 2003

Keywords

Comments

Number of numbers k, 0<=k<=n, such that (k AND n) = 0 (bitwise logical AND): a(n) = #{k : T(n,k)=n, 0<=k<=n}, where T is defined as in A080099.
Same parity as the Catalan numbers (A000108). - Paul D. Hanna, Nov 14 2012

Crossrefs

Cf. A001316.
Cf. A002487.
This is Guy Steele's sequence GS(5, 3) (see A135416).
Cf. A048896.

Programs

  • Haskell
    import Data.List (transpose)
    a080100 n = a080100_list !! n
    a080100_list =  1 : zs where
       zs =  1 : (concat $ transpose [map (* 2) zs, zs])
    -- Reinhard Zumkeller, Aug 27 2014, Mar 07 2011
    
  • Maple
    a:= n-> 2^add(1-i, i=Bits[Split](n)):
    seq(a(n), n=0..93);  # Alois P. Heinz, Aug 18 2025
  • Mathematica
    f[n_] := 2^DigitCount[n, 2, 0]; f[0] = 1; Array[f, 94, 0] (* Robert G. Wilson v *)
  • PARI
    a(n)=if(n<1,n==0,(2-n%2)*a(n\2))
    
  • PARI
    a(n)=local(A,m); if(n<0,0,m=1; A=1+O(x); while(m<=n,m*=2; A=subst(A,x,x^2)*(2+x)-1); polcoeff(A,n))
    
  • Python
    def A080100(n): return 1<Chai Wah Wu, Aug 18 2025

Formula

G.f. satisfies: F(x^2) = (1+F(x))/(x+2). - Ralf Stephan, Jun 28 2003
a(2n) = 2a(n), n>0. a(2n+1) = a(n). - Ralf Stephan, Apr 29 2003
a(n) = 2^A080791(n). a(n)=2^A023416(n), n>0.
a(n) = sum(k=0, n, C(n+k, k) mod 2). - Benoit Cloitre, Mar 06 2004
a(n) = sum(k=0, n, C(2n-k, n) mod 2). - Paul Barry, Dec 13 2004
G.f. satisfies: A(x) = Sum_{n>=0} [A(x)^n (mod 2)]*x^n, where A(x)^n (mod 2) reduces all coefficients modulo 2 to {0,1}. - Paul D. Hanna, Nov 14 2012

Extensions

Keyword base added by Rémy Sigrist, Jan 18 2018

A346697 Sum of the odd-indexed parts (odd bisection) of the multiset of prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 4, 2, 2, 1, 5, 3, 6, 1, 2, 2, 7, 3, 8, 4, 2, 1, 9, 2, 3, 1, 4, 5, 10, 4, 11, 3, 2, 1, 3, 3, 12, 1, 2, 2, 13, 5, 14, 6, 5, 1, 15, 4, 4, 4, 2, 7, 16, 3, 3, 2, 2, 1, 17, 3, 18, 1, 6, 3, 3, 6, 19, 8, 2, 5, 20, 4, 21, 1, 5, 9, 4, 7, 22, 5, 4, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 1100 are {1,1,3,3,5}, so a(1100) = 1 + 3 + 5 = 9.
The prime indices of 2100 are {1,1,2,3,3,4}, so a(2100) = 1 + 2 + 3 = 6.
		

Crossrefs

The version for standard compositions is A209281(n+1) (even: A346633).
Subtracting the even version gives A316524 (reverse: A344616).
The even version is A346698.
The reverse version is A346699.
The even reverse version is A346700.
A000120 and A080791 count binary digits 1 and 0, with difference A145037.
A000302 counts compositions with odd alternating sum, ranked by A053738.
A001414 adds up prime factors, row sums of A027746.
A029837 adds up parts of standard compositions (alternating: A124754).
A056239 adds up prime indices, row sums of A112798.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344606 counts alternating permutations of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[First/@Partition[Append[primeMS[n],0],2]],{n,100}]

Formula

a(n) = A056239(n) - A346698(n).
a(n) = A316524(n) + A346698(n).
a(n odd omega) = A346699(n).
a(n even omega) = A346700(n).
A344616(n) = A346699(n) - A346700(n).

A253557 a(1) = 0; after which, a(2n) = 1 + a(n), a(2n+1) = a(A268674(2n+1)).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 4, 2, 2, 2, 3, 1, 3, 1, 5, 3, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 3, 4, 2, 1, 5, 2, 3, 3, 3, 1, 3, 3, 4, 3, 2, 1, 4, 1, 2, 2, 6, 2, 4, 1, 3, 4, 3, 1, 5, 1, 2, 2, 3, 2, 3, 1, 5, 3, 2, 1, 5, 3, 2, 3, 4, 1, 5, 3, 3, 5, 2, 2, 6, 1, 3, 2, 4, 1, 4, 1, 4, 4, 2, 1, 4, 1, 4, 2, 5, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2015

Keywords

Comments

Consider the binary trees illustrated in A252753 and A252755: If we start from any n, computing successive iterations of A253554 until 1 is reached (i.e., we are traversing level by level towards the root of the tree, starting from that vertex of the tree where n is located), a(n) gives the number of even numbers encountered on the path (i.e., including both 2 and the starting n if it was even).
This is bigomega (A001222) analog for nonstandard factorization based on the sieve of Eratosthenes (A083221). See A302041 for an omega-analog. - Antti Karttunen, Mar 31 2018

Crossrefs

Essentially, one more than A253559.
Primes, A000040, gives the positions of ones.
Differs from A001222 for the first time at n=21, where a(21) = 3, while A001222(21) = 2.

Programs

Formula

a(1) = 0; after which, a(2n) = 1 + a(n), a(2n+1) = a(A268674(2n+1)).
a(n) = A253555(n) - A253556(n).
a(n) = A000120(A252754(n)). [Binary weight of A252754(n).]
Other identities.
For all n >= 0:
a(2^n) = n.
For all n >= 2:
a(n) = A080791(A252756(n)) + 1. [One more than the number of nonleading 0-bits in A252756(n).]
From Antti Karttunen, Apr 01 2018: (Start)
a(1) = 0; for n > 1, a(n) = 1 + a(A302042(n)).
a(n) = A001222(A250246(n)).
(End)

Extensions

Definition (formula) corrected by Antti Karttunen, Mar 31 2018

A346698 Sum of the even-indexed parts (even bisection) of the multiset of prime indices of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 1, 2, 3, 0, 1, 0, 4, 3, 2, 0, 2, 0, 1, 4, 5, 0, 3, 3, 6, 2, 1, 0, 2, 0, 2, 5, 7, 4, 3, 0, 8, 6, 4, 0, 2, 0, 1, 2, 9, 0, 2, 4, 3, 7, 1, 0, 4, 5, 5, 8, 10, 0, 4, 0, 11, 2, 3, 6, 2, 0, 1, 9, 3, 0, 3, 0, 12, 3, 1, 5, 2, 0, 2, 4, 13, 0, 5, 7, 14, 10, 6, 0, 5, 6, 1, 11, 15, 8, 4, 0, 4, 2, 4, 0, 2, 0, 7, 3
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 1100 are {1,1,3,3,5}, so a(1100) = 1 + 3 = 4.
The prime indices of 2100 are {1,1,2,3,3,4}, so a(2100) = 1 + 3 + 4 = 8.
		

Crossrefs

Subtracting from the odd version gives A316524 (reverse: A344616).
The version for standard compositions is A346633 (odd: A209281(n+1)).
The odd version is A346697.
The even reverse version is A346699.
The reverse version is A346700.
A000120 and A080791 count binary digits 1 and 0, with difference A145037.
A001414 adds up prime factors, row-sums of A027746.
A029837 adds up parts of standard compositions (alternating: A124754).
A056239 adds up prime indices, row-sums of A112798.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344606 counts alternating permutations of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[Last/@Partition[Append[primeMS[n],0],2]],{n,100}]
  • PARI
    A346698(n) = if(1==n,0,my(f=factor(n),s=0,p=0); for(k=1,#f~,while(f[k,2], s += (p%2)*primepi(f[k,1]); f[k,2]--; p++)); (s)); \\ Antti Karttunen, Nov 30 2021

Formula

a(n) = A056239(n) - A346697(n).
a(n) = A346697(n) - A316524(n).
a(n even omega) = A346699(n).
a(n odd omega) = A346700(n).
A344616(n) = A346699(n) - A346700(n).

Extensions

Data section extended up to 105 terms by Antti Karttunen, Nov 30 2021

A372683 Least squarefree number >= 2^n.

Original entry on oeis.org

1, 2, 5, 10, 17, 33, 65, 129, 257, 514, 1027, 2049, 4097, 8193, 16385, 32770, 65537, 131073, 262145, 524289, 1048577, 2097154, 4194305, 8388609, 16777217, 33554433, 67108865, 134217730, 268435457, 536870913, 1073741826, 2147483649, 4294967297, 8589934594
Offset: 0

Views

Author

Gus Wiseman, May 26 2024

Keywords

Examples

			The terms together with their binary expansions and binary indices begin:
       1:                    1 ~ {1}
       2:                   10 ~ {2}
       5:                  101 ~ {1,3}
      10:                 1010 ~ {2,4}
      17:                10001 ~ {1,5}
      33:               100001 ~ {1,6}
      65:              1000001 ~ {1,7}
     129:             10000001 ~ {1,8}
     257:            100000001 ~ {1,9}
     514:           1000000010 ~ {2,10}
    1027:          10000000011 ~ {1,2,11}
    2049:         100000000001 ~ {1,12}
    4097:        1000000000001 ~ {1,13}
    8193:       10000000000001 ~ {1,14}
   16385:      100000000000001 ~ {1,15}
   32770:     1000000000000010 ~ {2,16}
   65537:    10000000000000001 ~ {1,17}
  131073:   100000000000000001 ~ {1,18}
  262145:  1000000000000000001 ~ {1,19}
  524289: 10000000000000000001 ~ {1,20}
		

Crossrefs

For primes instead of powers of two we have A112926, opposite A112925, sum A373197, length A373198.
Counting zeros instead of all bits gives A372473, firsts of A372472.
These are squarefree numbers at indices A372540, firsts of A372475.
Counting ones instead of all bits gives A372541, firsts of A372433.
The opposite (greatest squarefree number <= 2^n) is A372889.
The difference from 2^n is A373125.
For prime instead of squarefree we have:
- bits A372684, firsts of A035100
- zeros A372474, firsts of A035103
- ones A372517, firsts of A014499
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A005117 lists squarefree numbers.
A030190 gives binary expansion, reversed A030308, length A070939 or A029837.
A061398 counts squarefree numbers between primes (exclusive).
A077643 counts squarefree terms between powers of 2, run-lengths of A372475.
A143658 counts squarefree numbers up to 2^n.

Programs

  • Mathematica
    Table[NestWhile[#+1&,2^n,!SquareFreeQ[#]&],{n,0,10}]
  • PARI
    a(n) = my(k=2^n); while (!issquarefree(k), k++); k; \\ Michel Marcus, May 29 2024
    
  • Python
    from itertools import count
    from sympy import factorint
    def A372683(n): return next(i for i in count(1<Chai Wah Wu, Aug 26 2024

Formula

a(n) = A005117(A372540(n)).
a(n) = A067535(2^n). - R. J. Mathar, May 31 2024

A372684 Least k such that prime(k) >= 2^n.

Original entry on oeis.org

1, 3, 5, 7, 12, 19, 32, 55, 98, 173, 310, 565, 1029, 1901, 3513, 6543, 12252, 23001, 43391, 82026, 155612, 295948, 564164, 1077872, 2063690, 3957810, 7603554, 14630844, 28192751, 54400029, 105097566, 203280222, 393615807, 762939112, 1480206280, 2874398516, 5586502349
Offset: 1

Views

Author

Gus Wiseman, May 30 2024

Keywords

Examples

			The numbers prime(a(n)) together with their binary expansions and binary indices begin:
        2:                       10 ~ {2}
        5:                      101 ~ {1,3}
       11:                     1011 ~ {1,2,4}
       17:                    10001 ~ {1,5}
       37:                   100101 ~ {1,3,6}
       67:                  1000011 ~ {1,2,7}
      131:                 10000011 ~ {1,2,8}
      257:                100000001 ~ {1,9}
      521:               1000001001 ~ {1,4,10}
     1031:              10000000111 ~ {1,2,3,11}
     2053:             100000000101 ~ {1,3,12}
     4099:            1000000000011 ~ {1,2,13}
     8209:           10000000010001 ~ {1,5,14}
    16411:          100000000011011 ~ {1,2,4,5,15}
    32771:         1000000000000011 ~ {1,2,16}
    65537:        10000000000000001 ~ {1,17}
   131101:       100000000000011101 ~ {1,3,4,5,18}
   262147:      1000000000000000011 ~ {1,2,19}
   524309:     10000000000000010101 ~ {1,3,5,20}
  1048583:    100000000000000000111 ~ {1,2,3,21}
  2097169:   1000000000000000010001 ~ {1,5,22}
  4194319:  10000000000000000001111 ~ {1,2,3,4,23}
  8388617: 100000000000000000001001 ~ {1,4,24}
		

Crossrefs

The opposite (greatest k such that prime(k) <= 2^n) is A007053.
Positions of first appearances in A035100.
The distance from prime(a(n)) to 2^n is A092131.
Counting zeros instead of all bits gives A372474, firsts of A035103.
Counting ones instead of all bits gives A372517, firsts of A014499.
For primes between powers of 2:
- sum A293697
- length A036378
- min A104080 or A014210
- max A014234, delta A013603
For squarefree numbers between powers of 2:
- sum A373123
- length A077643, run-lengths of A372475
- min A372683, delta A373125, indices A372540
- max A372889, delta A373126, indices A143658
For squarefree numbers between primes:
- sum A373197
- length A373198 = A061398 - 1
- min A000040
- max A112925, opposite A112926

Programs

  • Mathematica
    Table[PrimePi[If[n==1,2,NextPrime[2^n]]],{n,30}]
  • PARI
    a(n) = primepi(nextprime(2^n)); \\ Michel Marcus, May 31 2024

Formula

a(n>1) = A007053(n) + 1.
a(n) = A000720(A104080(n)).
prime(a(n)) = A104080(n).
prime(a(n)) - 2^n = A092131(n).

Extensions

More terms from Michel Marcus, May 31 2024
Previous Showing 11-20 of 87 results. Next