cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A081179 3rd binomial transform of (0,1,0,2,0,4,0,8,0,16,...).

Original entry on oeis.org

0, 1, 6, 29, 132, 589, 2610, 11537, 50952, 224953, 993054, 4383653, 19350540, 85417669, 377052234, 1664389721, 7346972688, 32431108081, 143157839670, 631929281453, 2789470811028, 12313319895997, 54353623698786
Offset: 0

Views

Author

Paul Barry, Mar 11 2003

Keywords

Comments

Binomial transform of 0, 1, 4, 14, 48, ... (A007070 with offset 1) and second binomial transform of A000129. - R. J. Mathar, Dec 10 2011

Crossrefs

Programs

  • Magma
    I:=[0, 1]; [n le 2 select I[n] else 6*Self(n-1)-7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 06 2013
  • Maple
    f:= gfun:-rectoproc({a(n) = 6*a(n-1)-7*a(n-2), a(0)=0, a(1)=1},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Mar 15 2016
  • Mathematica
    CoefficientList[Series[x/(1-6 x +7 x^2), {x,0,30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
    LinearRecurrence[{6,-7}, {0,1}, 41] (* G. C. Greubel, Jan 14 2024 *)
  • Sage
    [lucas_number1(n,6,7) for n in range(0, 23)] # Zerinvary Lajos, Apr 22 2009
    

Formula

a(n) = 6*a(n-1) - 7*a(n-2), a(0)=0, a(1)=1.
G.f.: x/(1-6*x+7*x^2).
a(n) = ((3+sqrt(2))^n - (3-sqrt(2))^n)/(2*sqrt(2)). [Corrected by Al Hakanson (hawkuu(AT)gmail.com), Dec 27 2008]
a(n) = 3^(n-1) Sum_{i>=0} binomial(n, 2i+1) * (2/9)^i. - Sergio Falcon, Mar 15 2016
a(n) = 2^(-1/2)*7^(n/2)*sinh(n*arcsinh(sqrt(2/7))). - Robert Israel, Mar 15 2016
E.g.f.: exp(3*x)*sinh(sqrt(2)*x)/sqrt(2). - Ilya Gutkovskiy, Aug 12 2017
a(n) = 7^((n-1)/2)*ChebyshevU(n-1, 3/sqrt(7)). - G. C. Greubel, Jan 14 2024

A164298 a(n) = ((1+4*sqrt(2))*(2+sqrt(2))^n + (1-4*sqrt(2))*(2-sqrt(2))^n)/2.

Original entry on oeis.org

1, 10, 38, 132, 452, 1544, 5272, 18000, 61456, 209824, 716384, 2445888, 8350784, 28511360, 97343872, 332352768, 1134723328, 3874187776, 13227304448, 45160842240, 154188760064, 526433355776, 1797355902976, 6136556900352, 20951515795456, 71532949381120
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 12 2009

Keywords

Comments

Binomial transform of A048696. Second binomial transform of A164587. Inverse binomial transform of A164299.
This sequence is part of a class of sequences defined by the recurrence a(n,m) = 2*(m+1)*a(n-1,m) - ((m+1)^2 - 2)*a(n-2,m) with a(0) = 1 and a(1) = m+9. The generating function is Sum_{n>=0} a(n,m)*x^n = (1 - (m-7)*x)/(1 - 2*(m+1)*x + ((m+1)^2 - 2)*x^2) and has a series expansion in terms of Pell-Lucas numbers defined by a(n, m) = (1/2)*Sum_{k=0..n} binomial(n,k)*m^(n-k)*(5*Q(k) + 4*Q(k-1)). - G. C. Greubel, Mar 12 2021

Crossrefs

Sequences in the class a(n, m): this sequence (m=1), A164299 (m=2), A164300 (m=3), A164301 (m=4), A164598 (m=5), A164599 (m=6), A081185 (m=7), A164600 (m=8).
Cf. A016116(n+1).

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+4*r)*(2+r)^n+(1-4*r)*(2-r)^n)/2: n in [0..27] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 17 2009
    
  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+6*x)/(1-4*x+2*x^2) )); // G. C. Greubel, Dec 14 2018
    
  • Maple
    a:=n->((1+4*sqrt(2))*(2+sqrt(2))^n+(1-4*sqrt(2))*(2-sqrt(2))^n)/2: seq(floor(a(n)),n=0..25); # Muniru A Asiru, Dec 15 2018
  • Mathematica
    LinearRecurrence[{4,-2}, {1,10}, 50] (* or *) CoefficientList[Series[(1 + 6*x)/(1 - 4*x + 2*x^2), {x,0,50}], x] (* G. C. Greubel, Sep 12 2017 *)
  • PARI
    my(x='x+O('x^50)); Vec((1+6*x)/(1-4*x+2*x^2)) \\ G. C. Greubel, Sep 12 2017
    
  • Sage
    [( (1+6*x)/(1-4*x+2*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Dec 14 2018; Mar 12 2021

Formula

a(n) = 4*a(n-1) - 2*a(n-2) for n > 1; a(0)=1, a(1)=10.
G.f.: (1+6*x)/(1-4*x+2*x^2).
E.g.f.: (cosh(sqrt(2)*x) + 4*sqrt(2)*sinh(sqrt(2)*x))*exp(2*x). - G. C. Greubel, Sep 12 2017
From G. C. Greubel, Mar 12 2021: (Start)
a(n) = A056236(n) + 8*A007070(n-1).
a(n) = (1/2)*Sum_{k=0..n} binomial(n,k)*(5*Q(k) + 4*Q(k-1)), where Q(n) = Pell-Lucas(n) = A002203(n). (End)

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 17 2009

A164600 a(n) = 18*a(n-1) - 79*a(n-2) for n > 1; a(0) = 1, a(1) = 17.

Original entry on oeis.org

1, 17, 227, 2743, 31441, 349241, 3802499, 40854943, 434991553, 4602307457, 48477201539, 509007338599, 5332433173201, 55772217368297, 582637691946467, 6081473282940943, 63438141429166081, 661450156372654961
Offset: 0

Views

Author

Klaus Brockhaus, Aug 17 2009

Keywords

Comments

Binomial transform of A081185 without initial term 0. Ninth binomial transform of A164587.
This sequence is part of a class of sequences defined by the recurrence a(n,m) = 2*(m+1)*a(n-1,m) - ((m+1)^2 - 2)*a(n-2,m) with a(0) = 1 and a(1) = m+9. The generating function is Sum_{n>=0} a(n,m)*x^n = (1 - (m-7)*x)/(1 - 2*(m+1)*x + ((m+1)^2 - 2)*x^2) and has a series expansion in terms of Pell-Lucas numbers defined by a(n, m) = (1/2)*Sum_{k=0..n} binomial(n,k)*m^(n-k)*(5*Q(k) + 4*Q(k-1)). - G. C. Greubel, Mar 12 2021

Crossrefs

Sequences in the class a(n, m): A164298 (m=1), A164299 (m=2), A164300 (m=3), A164301 (m=4), A164598 (m=5), A164599 (m=6), A081185 (m=7), this sequence (m=8).

Programs

  • Magma
    [ n le 2 select 16*n-15 else 18*Self(n-1)-79*Self(n-2): n in [1..18] ];
    
  • Maple
    m:=30; S:=series( (1-x)/(1-18*x+79*x^2), x, m+1):
    seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 12 2021
  • Mathematica
    LinearRecurrence[{18,-79},{1,17},30] (* Harvey P. Dale, Oct 30 2013 *)
  • PARI
    my(x='x+O('x^50)); Vec((1-x)/(1-18*x+79*x^2)) \\ G. C. Greubel, Aug 11 2017
    
  • Sage
    [( (1-x)/(1-18*x+79*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 12 2021

Formula

a(n) = ((1+4*sqrt(2))*(9+sqrt(2))^n + (1-4*sqrt(2))*(9-sqrt(2))^n)/2.
G.f.: (1-x)/(1-18*x+79*x^2).
E.g.f.: exp(9*x)*(cosh(sqrt(2)*x) + 4*sqrt(2)*sinh(sqrt(2)*x)). - G. C. Greubel, Aug 11 2017
From G. C. Greubel, Mar 12 2021: (Start)
a(n) = 2*A147960(n) + 8*A153593(n).
a(n) = (1/2)*Sum_{k=0..n} binomial(n,k)*8^(n-k)*(5*Q(k) + 4*Q(k-1)), where Q(n) = Pell-Lucas(n) = A002203(n). (End)

A164299 a(n) = ((1+4*sqrt(2))*(3+sqrt(2))^n + (1-4*sqrt(2))*(3-sqrt(2))^n)/2.

Original entry on oeis.org

1, 11, 59, 277, 1249, 5555, 24587, 108637, 479713, 2117819, 9348923, 41268805, 182170369, 804140579, 3549650891, 15668921293, 69165971521, 305313380075, 1347718479803, 5949117218293, 26260673951137, 115920223178771
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 12 2009

Keywords

Comments

Binomial transform of A164298. Third binomial transform of A164587. Inverse binomial transform of A164300.
This sequence is part of a class of sequences defined by the recurrence a(n,m) = 2*(m+1)*a(n-1,m) - ((m+1)^2 - 2)*a(n-2,m) with a(0) = 1 and a(1) = m+9. The generating function is Sum_{n>=0} a(n,m)*x^n = (1 - (m-7)*x)/(1 - 2*(m+1)*x + ((m+1)^2 - 2)*x^2) and has a series expansion in terms of Pell-Lucas numbers defined by a(n, m) = (1/2)*Sum_{k=0..n} binomial(n,k)*m^(n-k)*(5*Q(k) + 4*Q(k-1)). - G. C. Greubel, Mar 12 2021

Crossrefs

Sequences in the class a(n, m): A164298 (m=1), this sequence (m=2), A164300 (m=3), A164301 (m=4), A164598 (m=5), A164599 (m=6), A081185 (m=7), A164600 (m=8).

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+4*r)*(3+r)^n+(1-4*r)*(3-r)^n)/2: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 17 2009
    
  • Mathematica
    LinearRecurrence[{6,-7}, {1,11}, 50] (* or *) CoefficientList[Series[(1 + 5*x)/(1 - 6*x + 7*x^2), {x,0,50}], x] (* G. C. Greubel, Sep 12 2017 *)
  • PARI
    my(x='x+O('x^50)); Vec((1+5*x)/(1-6*x+7*x^2)) \\ G. C. Greubel, Sep 12 2017
    
  • Sage
    [( (1+5*x)/(1-6*x+7*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 12 2021

Formula

a(n) = 6*a(n-1) - 7*a(n-2) for n > 1; a(0) = 1, a(1) = 11.
G.f.: (1+5*x)/(1-6*x+7*x^2).
E.g.f.: (cosh(sqrt(2)*x) + 4*sqrt(2)*sinh(sqrt(2)*x))*exp(3*x). - G. C. Greubel, Sep 12 2017
From G. C. Greubel, Mar 12 2021: (Start)
a(n) = 2*A083878(n) + 8*A081179(n).
a(n) = (1/2)*Sum_{k=0..n} binomial(n,k)*2^(n-k)*(5*Q(k) + 4*Q(k-1)), where Q(n) = Pell-Lucas(n) = A002203(n). (End)

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 17 2009

A164300 a(n) = ((1+4*sqrt(2))*(4+sqrt(2))^n + (1-4*sqrt(2))*(4-sqrt(2))^n)/2.

Original entry on oeis.org

1, 12, 82, 488, 2756, 15216, 83144, 452128, 2453008, 13294272, 72012064, 389976704, 2111644736, 11433484032, 61904845952, 335169991168, 1814692086016, 9825156811776, 53195565289984, 288012326955008
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 12 2009

Keywords

Comments

Binomial transform of A164299. Fourth binomial transform of A164587. Inverse binomial transform of A164301.
This sequence is part of a class of sequences defined by the recurrence a(n,m) = 2*(m+1)*a(n-1,m) - ((m+1)^2 -2)*a(n-2,m) with a(0) = 1 and a(1) = m+9. The generating function is Sum_{n>=0} a(n,m)*x^n = (1 - (m-7)*x)/(1 - 2*(m+1)*x + ((m+1)^2 - 2)*x^2) and has a series expansion in terms of Pell-Lucas numbers defined by a(n, m) = (1/2)*Sum_{k=0..n} binomial(n,k)*m^(n-k)*(5*Q(k) + 4*Q(k-1)). - G. C. Greubel, Mar 12 2021

Crossrefs

Sequences in the class a(n, m): A164298 (m=1), A164299 (m=2), this sequence (m=3), A164301 (m=4), A164598 (m=5), A164599 (m=6), A081185 (m=7), A164600 (m=8).

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+4*r)*(4+r)^n+(1-4*r)*(4-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 17 2009
    
  • Mathematica
    LinearRecurrence[{8,-14},{1,12},30] (* Harvey P. Dale, Apr 13 2012 *)
  • PARI
    my(x='x+O('x^50)); Vec((1+4*x)/(1-8*x+14*x^2)) \\ G. C. Greubel, Sep 13 2017
    
  • Sage
    [( (1+4*x)/(1-8*x+14*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 12 2021

Formula

a(n) = 8*a(n-1) - 14*a(n-2) for n > 1; a(0) = 1, a(1) = 12.
G.f.: (1+4*x)/(1-8*x+14*x^2).
E.g.f.: (4*sqrt(2)*sinh(sqrt(2)*x) + cosh(sqrt(2)*x))*exp(4*x). - Ilya Gutkovskiy, Jun 24 2016
From G. C. Greubel, Mar 12 2021: (Start)
a(n) = 2*A083879(n) + 8*A081180(n).
a(n) = (1/2)*Sum_{k=0..n} binomial(n,k)*3^(n-k)*(5*Q(k) + 4*Q(k-1)), where Q(n) = Pell-Lucas(n) = A002203(n). (End)

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 17 2009

A164301 a(n) = ((1+4*sqrt(2))*(5+sqrt(2))^n + (1-4*sqrt(2))*(5-sqrt(2))^n)/2.

Original entry on oeis.org

1, 13, 107, 771, 5249, 34757, 226843, 1469019, 9472801, 60940573, 391531307, 2513679891, 16131578849, 103501150997, 663985196443, 4259325491499, 27321595396801, 175251467663533, 1124117982508907, 7210396068827811, 46249247090573249, 296653361322692837
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 12 2009

Keywords

Comments

Binomial transform of A164300. Fifth binomial transform of A164587. Inverse binomial transform of A164598.
This sequence is part of a class of sequences defined by the recurrence a(n,m) = 2*(m+1)*a(n-1,m) - ((m+1)^2 - 2)*a(n-2,m) with a(0) = 1 and a(1) = m+9. The generating function is Sum_{n>=0} a(n,m)*x^n = (1 - (m-7)*x)/(1 - 2*(m+1)*x + ((m+1)^2 - 2)*x^2) and has a series expansion in terms of Pell-Lucas numbers defined by a(n, m) = (1/2)*Sum_{k=0..n} binomial(n,k)*m^(n-k)*(5*Q(k) + 4*Q(k-1)). - G. C. Greubel, Mar 12 2021

Crossrefs

Sequences in the class a(n, m): A164298 (m=1), A164299 (m=2), A164300 (m=3), this sequence (m=4), A164598 (m=5), A164599 (m=6), A081185 (m=7), A164600 (m=8).

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+4*r)*(5+r)^n+(1-4*r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 17 2009
    
  • Mathematica
    LinearRecurrence[{10,-23},{1,13},20] (* Harvey P. Dale, Oct 15 2015 *)
  • PARI
    my(x='x+O('x^50)); Vec((1+3*x)/(1-10*x+23*x^2)) \\ G. C. Greubel, Sep 13 2017
    
  • Sage
    [( (1+3*x)/(1-10*x+23*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 12 2021

Formula

a(n) = 10*a(n-1) - 23*a(n-2) for n > 1; a(0) = 1, a(1) = 13.
G.f.: (1+3*x)/(1-10*x+23*x^2).
E.g.f.: ( cosh(sqrt(2)*x) + 4*sqrt(2)*sinh(sqrt(2)*x) )*exp(5*x). - G. C. Greubel, Sep 13 2017
From G. C. Greubel, Mar 12 2021: (Start)
a(n) = 2*A083880(n) + 8*A081182(n).
a(n) = (1/2)*Sum_{k=0..n} binomial(n,k)*4^(n-k)*(5*Q(k) + 4*Q(k-1)), where Q(n) = Pell-Lucas(n) = A002203(n). (End)

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 17 2009

A164598 a(n) = 12*a(n-1) - 34*a(n-2), for n > 1, with a(0) = 1, a(1) = 14.

Original entry on oeis.org

1, 14, 134, 1132, 9028, 69848, 531224, 3999856, 29936656, 223244768, 1661090912, 12342768832, 91636134976, 679979479424, 5044125163904, 37410199666432, 277422140424448, 2057118896434688, 15253073982785024, 113094845314640896
Offset: 0

Views

Author

Klaus Brockhaus, Aug 17 2009

Keywords

Comments

Binomial transform of A164301. Sixth binomial transform of A164587. Inverse binomial transform of A164599.
This sequence is part of a class of sequences defined by the recurrence a(n,m) = 2*(m+1)*a(n-1,m) - ((m+1)^2 -2)*a(n-2,m) with a(0) = 1 and a(1) = m+9. The generating function is Sum_{n>=0} a(n,m)*x^n = (1 - (m-7)*x)/(1 - 2*(m+1)*x + ((m+1)^2 -2)*x^2) and have a series expansion in terms of Pell-Lucas numbers defined by a(n, m) = (1/2)*Sum_{k=0..n} binomial(n,k)*m^(n-k)*(5*Q(k) + 4*Q(k-1)). - G. C. Greubel, Mar 11 2021

Crossrefs

Sequences in the class a(n, m): A164298 (m=1), A164299 (m=2), A164300 (m=3), A164301 (m=4), this sequence (m=5), A164599 (m=6), A081185 (m=7), A164600 (m=8).

Programs

  • Magma
    [ n le 2 select 13*n-12 else 12*Self(n-1)-34*Self(n-2): n in [1..30] ];
    
  • Maple
    m:=30; S:=series( (1+2*x)/(1-12*x+34*x^2), x, m+1):
    seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 11 2021
  • Mathematica
    LinearRecurrence[{12,-34}, {1,14}, 30] (* G. C. Greubel, Aug 11 2017 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+2*x)/(1-12*x+34*x^2)) \\ G. C. Greubel, Aug 11 2017
    
  • Sage
    [( (1+2*x)/(1-12*x+34*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 11 2021

Formula

a(n) = ((1+4*sqrt(2))*(6+sqrt(2))^n + (1-4*sqrt(2))*(6-sqrt(2))^n)/2.
G.f.: (1+2*x)/(1-12*x+34*x^2).
E.g.f.: exp(6*x)*(cosh(sqrt(2)*x) + 4*sqrt(2)*sinh(sqrt(2)*x)). - G. C. Greubel, Aug 11 2017
From G. C. Greubel, Mar 11 2021: (Start)
a(n) = A147957(n) + 8*A081183(n).
a(n) = (1/2)*Sum_{k=0..n} binomial(n,k)*5^(n-k)*(5*Q(k) + 4*Q(k-1)), where Q(n) = Pell-Lucas(n) = A002203(n). (End)

A164599 a(n) = 14*a(n-1) - 47*a(n-2), for n > 1, with a(0) = 1, a(1) = 15.

Original entry on oeis.org

1, 15, 163, 1577, 14417, 127719, 1110467, 9543745, 81420481, 691330719, 5851867459, 49433600633, 417032638289, 3515077706295, 29610553888547, 249339102243793, 2099051398651393, 17667781775661231, 148693529122641763
Offset: 0

Views

Author

Klaus Brockhaus, Aug 17 2009

Keywords

Comments

Binomial transform of A164598. Seventh binomial transform of A164587. Inverse binomial transform of A081185 without initial term 0.
This sequence is part of a class of sequences defined by the recurrence a(n,m) = 2*(m+1)*a(n-1,m) - ((m+1)^2 -2)*a(n-2,m) with a(0) = 1 and a(1) = m+9. The generating function is Sum_{n>=0} a(n,m)*x^n = (1 - (m-7)*x)/(1 - 2*(m+1)*x + ((m+1)^2 -2)*x^2) and have a series expansion in terms of Pell-Lucas numbers defined by a(n, m) = (1/2)*Sum_{k=0..n} binomial(n,k)*m^(n-k)*(5*Q(k) + 4*Q(k-1)). - G. C. Greubel, Mar 11 2021

Crossrefs

Sequences in the class a(n, m): A164298 (m=1), A164299 (m=2), A164300 (m=3), A164301 (m=4), A164598 (m=5), this sequence (m=6), A081185 (m=7), A164600 (m=8).

Programs

  • Magma
    [ n le 2 select 14*n-13 else 14*Self(n-1)-47*Self(n-2): n in [1..30] ];
    
  • Maple
    m:=30; S:=series( (1+x)/(1-14*x+47*x^2), x, m+1):
    seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 11 2021
  • Mathematica
    LinearRecurrence[{14,-47}, {1,15}, 30] (* G. C. Greubel, Aug 11 2017 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+x)/(1-14*x+47*x^2)) \\ G. C. Greubel, Aug 11 2017
    
  • Sage
    def A164599_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)/(1-14*x+47*x^2) ).list()
    A164599_list(30) # G. C. Greubel, Mar 11 2021

Formula

a(n) = ((1+4*sqrt(2))*(7+sqrt(2))^n + (1-4*sqrt(2))*(7-sqrt(2))^n)/2.
G.f.: (1+x)/(1-14*x+47*x^2).
E.g.f.: exp(7*x)*(cosh(sqrt(2)*x) + 4*sqrt(2)*sinh(sqrt(2)*x)). - G. C. Greubel, Aug 11 2017
From G. C. Greubel, Mar 11 2021: (Start)
a(n) = A147958(n) + 8*A081184(n).
a(n) = (1/2)*Sum_{k=0..n} binomial(n,k)*6^(n-k)*(5*Q(k) + 4*Q(k-1)), where Q(n) = Pell-Lucas(n) = A002203(n). (End)

A081184 7th binomial transform of (0,1,0,2,0,4,0,8,0,16,...).

Original entry on oeis.org

0, 1, 14, 149, 1428, 12989, 114730, 995737, 8548008, 72872473, 618458246, 5233409213, 44200191420, 372832446869, 3142245259426, 26468308629121, 222870793614672, 1876180605036721, 15791601170624510, 132901927952017253
Offset: 0

Views

Author

Paul Barry, Mar 11 2003

Keywords

Crossrefs

Binomial transform of A081183.
Cf. A081185.

Programs

  • Magma
    [n le 2 select n-1 else 14*Self(n-1)-47*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Aug 07 2013
    
  • Mathematica
    CoefficientList[Series[x/(1-14*x+47*x^2), {x,0,30}], x] (* Vincenzo Librandi, Aug 07 2013 *)
    LinearRecurrence[{14,-47},{0,1},30] (* Harvey P. Dale, Nov 12 2013 *)
  • SageMath
    A081184=BinaryRecurrenceSequence(14,-47,0,1)
    [A081184(n) for n in range(31)] # G. C. Greubel, Jan 14 2024

Formula

a(n) = 14*a(n-1) - 47*a(n-2), a(0)=0, a(1)=1.
G.f.: x/(1 - 14*x + 47*x^2). [Corrected by Georg Fischer, May 15 2019]
a(n) = ((7 + sqrt(2))^n - (7 - sqrt(2))^n)/(2*sqrt(2)).
a(n) = Sum_{k=0..n} C(n,2*k+1) * 2^k * 7^(n-2*k-1).
E.g.f.: exp(7*x)*sinh(sqrt(2)*x)/sqrt(2). - Ilya Gutkovskiy, Aug 12 2017

A153593 a(n) = ((9 + sqrt(2))^n - (9 - sqrt(2))^n)/(2*sqrt(2)).

Original entry on oeis.org

1, 18, 245, 2988, 34429, 383670, 4186169, 45041112, 480032665, 5082340122, 53559541661, 562566880260, 5895000053461, 61667217421758, 644304909368225, 6725778192309168, 70163919621475249, 731614075994130210
Offset: 1

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Dec 29 2008

Keywords

Comments

Preceded by zero, this is the eighth binomial transform of the Pell sequence A000129. - Sergio Falcon, Sep 21 2009; edited by Klaus Brockhaus, Oct 11 2009
Eighth binomial transform of A048697.
First differences are in A164600.
lim_{n -> infinity} a(n)/a(n-1) = 9 + sqrt(2) = 10.4142135623....

Crossrefs

Cf. A000129 (Pell numbers), A007070, A081185, A081184, A081183, A081182, A081180, A081179. - Sergio Falcon, Sep 21 2009
Cf. A002193 (decimal expansion of sqrt(2)), A048697, A164600.

Programs

  • Magma
    Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((9+r)^n-(9-r)^n)/(2*r): n in [1..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Dec 31 2008
  • Mathematica
    Join[{a=1,b=18},Table[c=18*b-79*a;a=b;b=c,{n,40}]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *)
    LinearRecurrence[{18,-79},{1,18},25] (* G. C. Greubel, Aug 22 2016 *)

Formula

a(n) = 18*a(n-1) - 79*a(n-2) for n>1; a(0)=0, a(1)=1. - Philippe Deléham, Jan 01 2009
G.f.: x/(1 - 18*x + 79*x^2). - Klaus Brockhaus, Dec 31 2008, corrected Oct 11 2009
a(n) = Sum[Binomial[n - 1 - i, i] (-1)^i * 18^(n - 1 - 2 i) * 79^i, {i, 0, Floor[(n - 1)/2]}]. - Sergio Falcon, Sep 21 2009
E.g.f.: exp(9*x)*sinh(sqrt(2)*x)/sqrt(2). - Ilya Gutkovskiy, Aug 12 2017

Extensions

Extended beyond a(7) by Klaus Brockhaus, Dec 31 2008
Edited by Klaus Brockhaus, Oct 11 2009
Showing 1-10 of 11 results. Next