cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A365608 Number of degree 4 vertices in the n-Sierpinski carpet graph.

Original entry on oeis.org

0, 4, 100, 1060, 9316, 77092, 624484, 5019172, 40223332, 321996580, 2576602468, 20614709284, 164923342948, 1319403749668, 10555281015652, 84442401180196, 675539668606564, 5404318726347556, 43234553943265636, 345876443943580708, 2767011588741012580, 22136092821505201444, 177088742906772914020
Offset: 1

Views

Author

Allan Bickle, Sep 12 2023

Keywords

Comments

The level 0 Sierpinski carpet graph is a single vertex. The level n Sierpinski carpet graph is formed from 8 copies of level n-1 by joining boundary vertices between adjacent copies.

Examples

			The level 1 Sierpinski carpet graph is an 8-cycle, which has 8 degree 2 vertices and 0 degree 3 or 4 vertices.  Thus a(1) = 0.
		

Crossrefs

Cf. A001018 (order), A271939 (size).
Cf. A365606 (degree 2), A365607 (degree 3), A365608 (degree 4).
Cf. A009964, A291066, A359452, A359453, A291066, A083233, A332705 (Menger sponge graph).

Programs

  • Mathematica
    LinearRecurrence[{12,-35,24},{0,4,100},30] (* Paolo Xausa, Oct 16 2023 *)
  • Python
    def A365608(n): return ((3<<3*n-1)-(3**(n-1)<<5))//5+4 # Chai Wah Wu, Nov 27 2023

Formula

a(n) = (3/10)*8^n - (32/15)*3^n + 4.
a(n) = 8*a(n-1) + 32*3^(n-2) - 28.
a(n) = 8^n - A365606(n) - A365607(n).
4*a(n) = 2*A271939(n) - 2*A365606(n) - 3*A365607(n).
G.f.: 4*x^2*(1 + 13*x)/((1 - x)*(1 - 3*x)*(1 - 8*x)). - Stefano Spezia, Sep 12 2023

A164640 a(n) = 8*a(n-2) for n > 2; a(1) = 1, a(2) = 6.

Original entry on oeis.org

1, 6, 8, 48, 64, 384, 512, 3072, 4096, 24576, 32768, 196608, 262144, 1572864, 2097152, 12582912, 16777216, 100663296, 134217728, 805306368, 1073741824, 6442450944, 8589934592, 51539607552, 68719476736, 412316860416
Offset: 1

Views

Author

Klaus Brockhaus, Aug 20 2009

Keywords

Comments

Interleaving of A001018 and A083233 without initial term 1.
Binomial transform is A164544. Third binomial transform is A038761.

Crossrefs

Cf. A001018 (powers of 8), A083233 ((3*8^n+(0)^n)/4), A164544, A038761.

Programs

  • Magma
    [ n le 2 select 5*n-4 else 8*Self(n-2): n in [1..26] ];
    
  • Mathematica
    LinearRecurrence[{0,8},{1,6},40] (* Harvey P. Dale, Nov 06 2013 *)
  • PARI
    a(n)=(7-(-1)^n)*2^(1/4*(6*n-15+3*(-1)^n)) \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = (7-(-1)^n)*2^(1/4*(6*n -15+3*(-1)^n)).
G.f.: x*(1+6*x)/(1-8*x^2).

Extensions

G.f. corrected by Klaus Brockhaus, Sep 18 2009

A367700 Number of degree 2 vertices in the n-Menger sponge graph.

Original entry on oeis.org

12, 72, 744, 11256, 201960, 3871416, 76138536, 1512609912, 30171384168, 602782587960, 12050495247528, 240968665611768, 4819043435788776, 96378229818994104, 1927543485550004520, 38550700825394191224, 771012665426135994984, 15420242499878035355448, 308404763528431125030312
Offset: 1

Views

Author

Allan Bickle, Nov 27 2023

Keywords

Comments

The level 0 Menger sponge graph is a single vertex. The level n Menger sponge graph is formed from 20 copies of level n-1 in the shape of a cube with middle faces removed by joining boundary vertices between adjacent copies.

Examples

			The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices.  Thus a(1) = 12.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359452, A359453 (numbers of corner and non-corner vertices).
Cf. A083233, A332705 (surface area).
Cf. A367701, A367702, A367706, A367707 (degrees 2 through 6).
Cf. A001018, A271939, A365602, A365606, A365607, A365608 (Sierpinski carpet graphs).

Programs

  • Mathematica
    LinearRecurrence[{31,-244,480}, {12, 72, 744}, 25] (* Paolo Xausa, Nov 28 2023 *)
  • Python
    def A367700(n): return (5*20**n+(34<<3*n)+216*3**n)//85 # Chai Wah Wu, Nov 27 2023

Formula

a(n) = (1/17)*20^n + (2/5)*8^n + (216/85)*3^n.
a(n) = 20*a(n-1) - (3/5)*8^n - (72/5)*3^n.
a(n) = 20^n - A367701(n) - A367702(n) - A367706(n) - A367707(n).
2*a(n) = 2*A291066(n) - 3*A367701(n) - 4*A365602(n) - 5*A367706(n) - 6*A367707(n).
G.f.: 12*x*(1 - 25*x + 120*x^2)/((1 - 3*x)*(1 - 8*x)*(1 - 20*x)). - Stefano Spezia, Nov 27 2023

A367701 Number of degree 3 vertices in the n-Menger sponge graph.

Original entry on oeis.org

8, 152, 2744, 49688, 941624, 18381464, 363917240, 7248334616, 144725667128, 2892582307736, 57836189374136, 1156600107729944, 23131012640050232, 462612336455034008, 9252183397644168632, 185043161299165038872, 3700859172747355380536, 74017151029040948253080
Offset: 1

Views

Author

Allan Bickle, Nov 27 2023

Keywords

Comments

The level 0 Menger sponge graph is a single vertex. The level n Menger sponge graph is formed from 20 copies of level n-1 in the shape of a cube with middle faces removed by joining boundary vertices between adjacent copies.

Examples

			The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices.  Thus a(1) = 8.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359452, A359453 (numbers of corner and non-corner vertices).
Cf. A291066, A083233, A332705 (surface area).
Cf. A367700, A367701, A367702, A367706, A367707 (degrees 2 through 6).
Cf. A001018, A271939, A365606, A365607, A365608 (Sierpinski carpet graphs).

Programs

  • Mathematica
    LinearRecurrence[{32,-275,724,-480},{8,152,2744,49688},25] (* Paolo Xausa, Nov 28 2023 *)
  • Python
    def A367701(n): return ((3*5**n<<(n<<1)+3)+(51<<(3*n+1))-(3**(n+3)<<4))//85+8 # Chai Wah Wu, Nov 28 2023

Formula

a(n) = (24/85)*20^n + (6/5)*8^n - (432/85)*3^n + 8.
a(n) = 20*a(n-1) - (9/5)*8^n + (144/5)*3^n - 152.
a(n) = 20^n - A367700(n) - A367702(n) - A367706(n) - A367707(n).
3*a(n) = 2*A291066(n) - 2*A367700(n) - 4*A365602(n) - 5*A367706(n) - 6*A367707(n).
G.f.: 8*x*(1 - 13*x + 10*x^2 - 264*x^3)/((1 - x)*(1 - 3*x)*(1 - 8*x)*(1 - 20*x)). - Stefano Spezia, Nov 27 2023

A367702 Number of degree 4 vertices in the n-Menger sponge graph.

Original entry on oeis.org

0, 144, 2784, 57552, 1180320, 23889936, 480221280, 9624275280, 192645717024, 3854200280208, 77094305873376, 1541968557881808, 30840030795738528, 616805893363960080, 12336160087905835872, 246723539526229152336, 4934473492678780614432, 98689491470837087102352
Offset: 1

Views

Author

Allan Bickle, Nov 27 2023

Keywords

Comments

The level 0 Menger sponge graph is a single vertex. The level n Menger sponge graph is formed from 20 copies of level n-1 in the shape of a cube with middle faces removed by joining boundary vertices between adjacent copies.

Examples

			The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices.  Thus a(1) = 0.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359452, A359453 (numbers of corner and non-corner vertices).
Cf. A291066, A083233, A332705 (surface area).
Cf. A367700, A367701, A367702, A367706, A367707 (degrees 2 through 6).
Cf. A001018, A271939, A365606, A365607, A365608 (Sierpinski carpet graphs).

Programs

  • Mathematica
    LinearRecurrence[{32,-275,724,-480},{0,144,2784,57552},25] (* Paolo Xausa, Nov 29 2023 *)
  • Python
    def A367702(n): return ((5**n<<(n<<1)+5)-(17<<(3*n+2))+(3**(n+4)<<3))//85-24 # Chai Wah Wu, Nov 28 2023

Formula

a(n) = (32/85)*20^n - (4/5)*8^n + (648/85)*3^n - 24.
a(n) = 20*a(n-1) + (6/5)*8^n - (216/5)*3^n + 456.
a(n) = 20^n - A367700(n) - A367701(n) - A367706(n) - A367707(n).
4*a(n) = 2*A291066(n) - 2*A367700(n) - 3*A367701(n) - 5*A367706(n) - 6*A367707(n).
G.f.: 12*x^2*(7 - 224*x + 1865*x^2 - 4308*x^3)/(5*(1 - x)*(1 - 3*x)*(1 - 8*x)*(1 - 20*x)). - Stefano Spezia, Nov 28 2023

A367706 Number of degree 5 vertices in the n-Menger sponge graph.

Original entry on oeis.org

0, 24, 1272, 27192, 537720, 10638648, 211640184, 4223114808, 84382898808, 1687017131832, 33735198879096, 674662776506424, 13492925768472696, 269855876817045816, 5397096426544159608, 107941759648376656440, 2158833841895083390584, 43176666029284877542200, 863533234116651651590520
Offset: 1

Views

Author

Allan Bickle, Nov 27 2023

Keywords

Comments

The level 0 Menger sponge graph is a single vertex. The level n Menger sponge graph is formed from 20 copies of level n-1 in the shape of a cube with middle faces removed by joining boundary vertices between adjacent copies.

Examples

			The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices.  Thus a(1) = 0.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359452, A359453 (numbers of corner and non-corner vertices).
Cf. A291066, A083233, A332705 (surface area).
Cf. A367700, A367701, A367702, A367706, A367707 (degrees 2 through 6).
Cf. A001018, A271939, A365606, A365607, A365608 (Sierpinski carpet graphs).

Programs

  • Mathematica
    LinearRecurrence[{32,-275,724,-480},{0,24,1272,27192},25] (* Paolo Xausa, Nov 29 2023 *)
  • Python
    def A367706(n): return ((7*5**n<<(n<<1)+1)+(17<<(3*n+1))-(3**(n+3)<<5))//85+24 # Chai Wah Wu, Nov 28 2023

Formula

a(n) = (14/85)*20^n + (2/5)*8^n - (864/85)*3^n + 24.
a(n) = 20*a(n-1) - (3/5)*8^n + (288/5)*3^n - 456.
a(n) = 20^n - A367700(n) - A367701(n) - A367702(n) - A367707(n).
5*a(n) = 2*A291066(n) - 2*A367700(n) - 3*A367701(n) - 4*A365602(n) - 6*A367707(n).
G.f.: 24*x^2*(1 + 21*x - 288*x^2)/((1 - x)*(1- 3*x)*(1 - 8*x)*(1 - 20*x)). - Stefano Spezia, Nov 28 2023

A367707 Number of degree 6 vertices in the n-Menger sponge graph.

Original entry on oeis.org

0, 8, 456, 14312, 338376, 7218536, 148082760, 2991665384, 60074332872, 1203417692264, 24083810625864, 481799892270056, 9636987359949768, 192747663544965992, 3855016602355831368, 77100838700834961128, 1542020827252644619464, 30840448970959051746920, 616809238826486098348872
Offset: 1

Views

Author

Allan Bickle, Nov 27 2023

Keywords

Comments

The level 0 Menger sponge graph is a single vertex. The level n Menger sponge graph is formed from 20 copies of level n-1 in the shape of a cube with middle faces removed by joining boundary vertices between adjacent copies.

Examples

			The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices.  Thus a(1) = 0.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359452, A359453 (numbers of corner and non-corner vertices).
Cf. A291066, A083233, A332705 (surface area).
Cf. A367700, A367701, A367702, A367706, A367707 (degrees 2 through 6).
Cf. A001018, A271939, A365606, A365607, A365608 (Sierpinski carpet graphs).

Programs

  • Mathematica
    LinearRecurrence[{32,-275,724,-480},{0,8,456,14312},25] (* Paolo Xausa, Nov 29 2023 *)
  • Python
    def A367707(n): return ((5**(n+1)<<(n<<1)+1)-(51<<(3*n+1))+(3**(n+3)<<4))//85-8 # Chai Wah Wu, Nov 28 2023

Formula

a(n) = (2/17)*20^n - (6/5)*8^n + (432/85)*3^n - 8.
a(n) = 20*a(n-1) + (9/5)*8^n - (144/5)*3^n + 152.
a(n) = 20^n - A367700(n) - A367701(n) - A367702(n) - A367706(n).
6*a(n) = 2*A291066(n) - 2*A367700(n) - 3*A367701(n) - 4*A365602(n) - 5*A367706(n).
G.f.: 8*x^2*(1 + 25*x + 240*x^2)/((1 - x)*(1 - 3*x)*(1 - 8*x)*(1 - 20*x)). - Stefano Spezia, Nov 28 2023

A083232 a(n) = (3*7^n+(-1)^n)/4.

Original entry on oeis.org

1, 5, 37, 257, 1801, 12605, 88237, 617657, 4323601, 30265205, 211856437, 1482995057, 10380965401, 72666757805, 508667304637, 3560671132457, 24924697927201, 174472885490405, 1221310198432837, 8549171389029857
Offset: 0

Views

Author

Paul Barry, Apr 23 2003

Keywords

Comments

Binomial transform of A053524 (without leading zero).

Crossrefs

Cf. A083233.

Programs

Formula

a(n) = (3*7^n+(-1)^n)/4.
G.f.: (1-x)/((1-7*x)*(1+x)).
E.g.f.: (3*exp(7*x)+exp(-x))/4

A181107 Triangle read by rows: T(n,k) is the number of 2 X 2 matrices over Z(n) having determinant congruent to k mod n, 1 <= n, 0 <= k <= n-1.

Original entry on oeis.org

1, 10, 6, 33, 24, 24, 88, 48, 72, 48, 145, 120, 120, 120, 120, 330, 144, 240, 198, 240, 144, 385, 336, 336, 336, 336, 336, 336, 736, 384, 576, 384, 672, 384, 576, 384, 945, 648, 648, 864, 648, 648, 864, 648, 648, 1450, 720, 1200, 720, 1200, 870, 1200, 720, 1200, 720
Offset: 1

Views

Author

Erdos Pal, Oct 03 2010

Keywords

Comments

The n-th row is {T(n,0),T(n,1),...,T(n,n-1)}.
Let m denote the prime power p^e.
T(m,0) = A020478(m) = (p^(e+1) + p^e-1)*p^(2*e-1).
T(m,1) = A000056(m) = (p^2-1)*p^(3*e-2).
T(prime(n),1) = A127917(n).
Sum_{k=1..n-1} T(n,k) = A005353(n).
T(n,1) = n*A007434(n) for n>=1 because A000056(n) = n*Jordan_Function_J_2(n).
T(2^n,1) = A083233(n) = A164640(2n) for n>=1. Proof: a(n):=T(2^n,1); a(1)=6, a(n)=8*a(n-1); A083233(1)=6 and A083233(n) is a geometric series with ratio 8 (because of its g.f.), too; A164640 = {b(1)=1, b(2)=6, b(n)=8*b(n-2)}.
T(2^n,0) = A165148(n) for n>=0, because 2*T(2^n,0) = (3*2^n-1)*4^n.
T(2^e,2) = A003951(e) for 2 <= e. Proof: T(2^e,2) = 9*8^(e-1) is a series with ratio 8 and initial term 72, as A003951(2...inf) is.
Working with consecutive powers of a prime p, we need a definition (0 <= i < e):
N(p^e,i):=#{k: 0 < k < p^e, gcd(k,p^e) = p^i} = (p-1)*p^(e-1-i). We say that these k's belong to i (respect to p^e). Note that N(p^e,0) = EulerPhi(p^e), and if 0 < k < p^e then gcd(k,p^e) = gcd(k,p^(e+1)). Let T(p^e,[i]) denote the common value of T(p^e,k)'s, where k's belong to i (q.v.PROGRAM); for example, T(p^e,[0]) = T(p^e,1). The number of the 2 X 2 matrices over Z(p^e), T(p^e,0) + Sum_{i=0..e-1} T(p^e,[i])*N(p^e,i) = p^(4e) will be useful.
On the hexagon property: Let prime p be given and let T(p^e,[0]), T(p^e,[1]), T(p^e,[2]), ..., T(p^e,[e-2]), T(p^e,[e-1]) form the e-th row of a Pascal-like triangle, e>=1. Let denote X(r,s) an element of the triangle and its value T(p^r,[s]). Let positive integers a and b given, so that the entries A(m-a,n-b), B(m-a,n), C(m,n+a), D(m+b,n+a), E(m+b,n), F(m,n-b) of the triangle form a hexagon spaced around T(p^m,[n]); if a=b=1 then they surround it. If A*C*E = B*D*F, then we say that the triangle T(.,.) has the "hexagon property". (In the case of binomial coefficients X(r,s) = COMB(r,s), the "hexagon property" holds (see [Gupta]) and moreover gcd(A,C,E) = gcd(B,D,F) (see [Hitotumatu & Sato]).)
Corollary 2.2 in [Brent & McKay] says that, for the d X d matrices over Z(p^e), (mutatis mutandis) T_d(p^e,0) = K*(1-P(d+e-1)/P(e-1)) and T_d(p^e,[i]) = K*(q^e)*((1-q^d)/(1-q))*P(d+i-1)/P(i), where q=1/p, K=(p^e)^(d^2), P(t) = Product_{j=1..t} (1-q^j), P(0):=1. (For the case d=2, we have T(p^e,[i]) = (p+1)*(p^(i+1)-1)*p^(3*e-i-2).) Due to [Brent & McKay], it can be simply proved that for d X d matrices the "hexagon property" is true. The formulation implies an obvious generalization: For the entries A(r,u), B(r,v), C(s,w), D(t,w), E(t,v), F(s,u) of the T_d(.,.)-triangle, a hexagon-like property A*C*E = B*D*F holds. This is false in general for the COMB(.,.)-triangle.
Another (rotated-hexagon-like) property: for the entries A(m-b1,n), B(m-a1,n+c2), C(m+a2,n+c2), D(m+b2,n), E(m+a2,n-c1), F(m-a1,n-c1) of the T_d(.,.)-triangle, the property A*C*E = B*D*F holds, if and only if 2*(a1 + a2) = b1 + b2. This is also in general false for COMB(.,.)-triangle.

Examples

			From _Andrew Howroyd_, Jul 16 2018: (Start)
Triangle begins:
    1;
   10,   6;
   33,  24,  24;
   88,  48,  72,  48;
  145, 120, 120, 120, 120;
  330, 144, 240, 198, 240, 144;
  385, 336, 336, 336, 336, 336, 336;
  736, 384, 576, 384, 672, 384, 576, 384;
  945, 648, 648, 864, 648, 648, 864, 648, 648;
  ... (End)
		

Crossrefs

Column k=0 is A020478.
Column k=1 is A000056.
Row sums are A005353.

Programs

  • Other
      (* computing T(p^e,k) ; p=prime, 1<=e, 0<=k
    				
  • PARI
    S(p,e)={my(u=vector(p^e)); my(t=(p-1)*p^(e-1)); u[1] = p^e + e*t; for(j=1, p^e-1, u[j+1] = t*(1+valuation(j, p))); vector(#u, k, sum(j=0, #u-1, u[j + 1]*u[(j+k-1) % #u + 1]))}
    T(n)={my(f=factor(n), v=vector(n,i,1)); for(i=1, #f~, my(r=S(f[i,1], f[i,2])); for(j=0, #v-1, v[j + 1] *= r[j % #r + 1])); v}
    for(n=1, 10, print(T(n))); \\ Andrew Howroyd, Jul 16 2018

Formula

T(a*b,k) = T(a,(k mod a))*T(b,(k mod b)) if gcd(a,b) = 1.
Sum_{k=1..n-1, gcd(k,n)=1} T(n,k) = A000252(n). - Andrew Howroyd, Jul 16 2018

Extensions

Terms a(24)-a(55) from b-file by Andrew Howroyd, Jul 16 2018

A363146 Triangle T(n,k) in which the n-th row encodes the inverse of a 3n X 3n Jacobi matrix, with 1's on the lower, main, and upper diagonals in GF(2), where the encoding consists of the decimal representations for the binary rows (n >= 1, 1 <= k <= 3n).

Original entry on oeis.org

3, 7, 6, 27, 59, 48, 3, 55, 54, 219, 475, 384, 27, 443, 432, 3, 439, 438, 1755, 3803, 3072, 219, 3547, 3456, 27, 3515, 3504, 3, 3511, 3510, 14043, 30427, 24576, 1755, 28379, 27648, 219, 28123, 28032, 27, 28091, 28080, 3, 28087, 28086, 112347, 243419, 196608, 14043, 227035, 221184, 1755, 224987, 224256, 219, 224731
Offset: 1

Views

Author

Nei Y. Soma, May 19 2023

Keywords

Comments

Each term of the sequence encodes a line of the inverse of a Jacobi matrix that has 1s on its lower, main, and upper diagonals in GF(2). The associated inverse matrix column values come from the binary representation of that base-10 number, being a bit per column. These matrices have ascending and consecutive multiples of 3 sizes. If the binary number has fewer bits than the number of columns, it must be zero-padded to the left. To obtain the inverse matrices in real numbers instead of GF(2), alternate between + and - between the 1s in a row. If a row is a multiple of 3, alternate between - and +. The determinants of these 3m x 3m Jacobi matrices are 1 in GF(2), as proven by Sutner (1989), and alternate between -1 and 1 in R if m is odd or even, as proven by Melo (1987).
The recurrence, in line 3, uses the Iverson notation as presented in Graham, Knuth, and Patashnik (2002).
The proof of the correctness of that sequence of inverses is done by induction.

Examples

			For n = 1, the Jacobi 3 X 3 matrix has as rows
     1, 1, 0
     1, 1, 1
     0, 1, 1.
Its inverse has the rows
     0, 1, 1
     1, 1, 1
     1, 1, 0.
Representing these rows as decimal numbers the first three terms of the sequence are: 3, 7, and 6.
The next terms in the sequence occur for n = 2, given a sequence of six numbers. The Jacobi 6 X 6 matrix has as its rows:
      1, 1, 0, 0, 0, 0
      1, 1, 1, 0, 0, 0
      0, 1, 1, 1, 0, 0
      0, 0, 1, 1, 1, 0
      0, 0, 0, 1, 1, 1
      0, 0, 0, 0, 1, 1.
Its inverse has as rows:
      0, 1, 1, 0, 1, 1
      1, 1, 1, 0, 1, 1
      1, 1, 0, 0, 0, 0
      0, 0, 0, 0, 1, 1
      1, 1, 0, 1, 1, 1
      1, 1, 0, 1, 1, 0.
These 6 latter rows from binary to decimal give the next 6 terms of the sequence: 27, 49, 48, 3, 55, and 54.
Triangle T(n,k) begins:
     3,    7,    6;
    27,   59,   48,   3,   55,   54;
   219,  475,  384,  27,  443,  432,  3,  439,  438;
  1755, 3803, 3072, 219, 3547, 3456, 27, 3515, 3504, 3, 3511, 3510;
  ...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Boston, 2nd Ed., 12th printing, 2002, pp. 24-25.
  • P. Lancaster and M. Tismenetsky, The Theory of Matrices, Academic Press, Boston, 1985, p. 35.
  • J. P. Melo, Reversibility of John von Neumann cellular automata, M.Sc. Thesis, Division of Computer Science, Instituto Tecnológico de Aeronáutica, 1997 (in Portuguese), p. 18.
  • K. Sutner, Linear Cellular Automata and the Garden-of-Eden, The Mathematical Intelligencer, 11(2), 1989, 49-53, p. 52.

Crossrefs

Column k=1 gives A083713.
Column k=3 gives A083233.
T(n,3n) gives A125837(n+1).
T(n,3n-1) gives A083068.
T(n,3n-2) gives A010701.
Cf. A038184 one-dimensional cellular automaton (Rule 150) in a tape with 3n cells has as adjacency matrix the Jacobi matrices, 3n X 3n, with 1s on the lower, main and upper diagonals and the operations on it are in GF(2).

Programs

  • Maple
    T:= n-> (M-> seq(add(abs(M[j, n*3-i])*2^i, i=0..n*3-1), j=1..n*3))
                   (Matrix(n*3, (i, j)-> `if`(abs(i-j)<2, 1, 0))^(-1)):
    seq(T(n), n=1..10);  # Alois P. Heinz, May 20 2023
  • Mathematica
    sequence = {};
    m = 6;
    For[k = 1, k <= m, k++, {
      n = 3*k;
      J = ConstantArray[0, {n, n}];
      For[i = 1, i < n, i++,
       J[[i, i]] = J[[i + 1, i]] = J[[i, i + 1]] = 1];
      J[[1, 1]] = J[[n, n]] = 1;
      InvJ = Mod[Inverse[J], 2];
      For[i = 1, i <= n, i++, AppendTo[sequence, FromDigits[InvJ[[i]], 2]]]
      }
     ]
    sequence
  • PARI
    row(n)=my(m=3*n, A=lift(matrix(m, m, i, j, Mod(abs(i-j)<=1, 2))^(-1))); vector(m, i, fromdigits(A[i,], 2)) \\ Andrew Howroyd, May 20 2023

Formula

The recurrence has as its base: r(1, 1) = 3; r(2, 1) = 7 and r(3, 1) = 6;
For 2 <= k <= m, and i = 1, 2, ..., 3(k-1):
r(i, k) = 8*r(i, k-1) + r(1,1) (i != 0 (mod 3)).
And r(3k-2, k) = r(1, 1);
r(3k-1, k) = 8*r(3(k-1), k-1) + r(2,1);
r(3k, k) = 8*r(3(k-1), (k-1)) + r(3, 1).
Previous Showing 11-20 of 20 results.