cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A297494 a(n) = (1/2) * Sum_{|k|<=2*sqrt(p)} k^10*H(4*p-k^2) where H() is the Hurwitz class number and p is n-th prime.

Original entry on oeis.org

513, 20708, 584874, 4714408, 72449100, 200562418, 1012788198, 1953009460, 6172747128, 24788658690, 37242612640, 107770200778, 198936710910, 265200653548, 449592659568, 931777815258, 1775665528380, 2155635964450, 3812897562148, 5368106367720, 6351988507678
Offset: 1

Views

Author

Seiichi Manyama, Dec 31 2017

Keywords

Crossrefs

(1/2) * Sum_{|k|<=2*sqrt(p)} k^m*H(4*p-k^2): A000040 (m=0), A084920 (m=2), A297491 (m=4), A297492 (m=6), A297493 (m=8), this sequence (m=10).

Formula

Let b(n) = 42*n^6 - 90*n^4 - 75*n^3 - 35*n^2 - 9*n - 1.
a(n) = b(prime(n)) - tau(prime(n)) where tau(n)=A000594(n) is Ramanujan's tau function.
So tau(prime(n)) + 1 == -a(n) (mod prime(n)).

A056813 Largest non-unitary prime factor of LCM(1,...,n); that is, the largest prime which occurs to power > 1 in prime factorization of LCM(1,..,n).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 1

Views

Author

Labos Elemer, Aug 28 2000

Keywords

Comments

For n>0, prime(n) appears {(prime(n+1))^2 - (prime(n))^2} times [from n=(prime(n))^2 to n=(prime(n+1))^2 - 1], that is, A000040(n) appears A069482(n) times (from n=A001248(n) to n=A084920(n+1)). - Lekraj Beedassy, Mar 31 2005
a(n) is the largest prime factor of A045948(n). [Matthew Vandermast, Oct 29 2008]
Alternative definition: a(n) = largest prime <= sqrt(n) (considering 1 as prime for this occasion, see A008578 for the 19th century definition of primes). - Jean-Christophe Hervé, Oct 29 2013

Examples

			The j-th prime appears at the position of its square, at n = prime(j)^2.
		

Crossrefs

Programs

Formula

a(n) = prime(w) if prime(w)^2 <= n < prime(w+1)^2.
To get the sequence, repeat 1 three times, and then for any k >= 1, repeat A000040(k) A069482(k) times; or equivalently, for any k >= 1, repeat A008578(k) a number of times equal to A008578(k+1)^2 - A008578(k)^2. - Jean-Christophe Hervé, Oct 29 2013

Extensions

Corrected offset by Jean-Christophe Hervé, Oct 29 2013

A087713 Greatest prime factor of the product of the neighbors of the n-th prime.

Original entry on oeis.org

3, 2, 3, 3, 5, 7, 3, 5, 11, 7, 5, 19, 7, 11, 23, 13, 29, 31, 17, 7, 37, 13, 41, 11, 7, 17, 17, 53, 11, 19, 7, 13, 23, 23, 37, 19, 79, 41, 83, 43, 89, 13, 19, 97, 11, 11, 53, 37, 113, 23, 29, 17, 11, 7, 43, 131, 67, 17, 139, 47, 71, 73, 17, 31, 157, 79, 83, 13, 173, 29, 59
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 28 2003

Keywords

Comments

Apparently a(n) = A024710(n) for n>4. - Georg Fischer, Oct 06 2018
Conjecture: The record values are A120628 \ {2}. - Jason Yuen, Jan 19 2025

Examples

			a(10) = A006530(prime(10)^2 - 1) = A006530(29*29-1) = A006530(840) = A006530(7*5*3*2^3) = 7.
		

Crossrefs

Programs

  • Haskell
    a087713 = a006530 . a084920  -- Reinhard Zumkeller, Aug 27 2013
    
  • Mathematica
    FactorInteger[#][[-1,1]]&/@((#-1)(#+1)&/@Prime[Range[80]]) (* Harvey P. Dale, Oct 26 2019 *)
  • PARI
    a(n) = my(p=prime(n)); vecmax(factor((p-1)*(p+1))[, 1]); \\ Michel Marcus, Jan 20 2025
    
  • Python
    from sympy import prime, primefactors
    def A087713(n): p = prime(n); return max(primefactors(p*p-1))  # Ya-Ping Lu, Mar 07 2025

Formula

a(n) = A006530((A000040(n)-1)*(A000040(n)+1)) = A006530(A006093(n)*A008864(n)) = A006530(A084920(n)).
a(n) <= (prime(n)+1)/2, n > 1. - Ya-Ping Lu, Apr 10 2025

Extensions

Definition clarified by Harvey P. Dale, Oct 26 2019

A275630 a(n) = product of distinct primes dividing prime(n)^2 - 1.

Original entry on oeis.org

3, 2, 6, 6, 30, 42, 6, 30, 66, 210, 30, 114, 210, 462, 138, 78, 870, 930, 1122, 210, 222, 390, 1722, 330, 42, 510, 1326, 318, 330, 798, 42, 4290, 2346, 4830, 1110, 570, 6162, 246, 3486, 7482, 2670, 2730, 570, 582, 462, 330, 11130, 1554, 12882, 13110, 2262, 3570, 330, 210, 258, 8646, 2010
Offset: 1

Views

Author

N. J. A. Sloane, Aug 07 2016

Keywords

Crossrefs

Subsequence of A007947.

Programs

  • Mathematica
    a[n_] := Times @@ FactorInteger[Prime[n]^2 - 1][[;; , 1]]; Array[a, 60] (* Amiram Eldar, Jan 30 2021 *)
  • PARI
    a(n) = factorback(factorint(prime(n)^2-1)[, 1]); \\ Michel Marcus, Jan 30 2021

Formula

a(n) = A007947(A084920(n)). - Michel Marcus, Jan 30 2021
a(n) = A077063(n)*A077066(n)/2, for n > 1. - Amiram Eldar, Jan 30 2021

A281958 Primes p such that p^2 - 1 is not a totient number (A002202).

Original entry on oeis.org

2, 173, 317, 509, 709, 773, 787, 947, 1307, 1447, 1579, 1613, 1627, 1867, 2347, 2467, 2693, 3307, 3413, 3547, 3803, 3923, 4007, 4243, 4567, 4597, 4723, 4793, 4813, 4937, 4973, 5227, 5261, 5387, 5483, 5557, 5653, 5717, 5827, 5843, 6277, 6397, 6547, 6653, 6793, 6907
Offset: 1

Views

Author

Altug Alkan, Feb 03 2017

Keywords

Comments

Corresponding values of p^2 - 1 are 3, 29928, 100488, 259080, 502680, 597528, 619368, 896808, 1708248, ...

Examples

			Prime number 173 is a term because 173^2 - 1 = 29928 is not a totient number.
		

Crossrefs

Programs

  • PARI
    is(n) = isprime(n) && !istotient(n^2-1);

A340065 Decimal expansion of the Product_{p>=2} 1+p^2/((p-1)^2*(p+1)^2) where p are successive prime numbers A000040.

Original entry on oeis.org

1, 8, 1, 0, 7, 8, 1, 4, 7, 6, 1, 2, 1, 5, 6, 2, 9, 5, 2, 2, 4, 3, 1, 2, 5, 9, 0, 4, 4, 8, 6, 2, 5, 1, 8, 0, 8, 9, 7, 2, 5, 0, 3, 6, 1, 7, 9, 4, 5, 0, 0, 7, 2, 3, 5, 8, 9, 0, 0, 1, 4, 4, 7, 1, 7, 8, 0, 0, 2, 8, 9, 4, 3, 5, 6, 0, 0, 5, 7, 8, 8, 7, 1, 2, 0, 1, 1, 5, 7, 7, 4, 2, 4, 0, 2, 3, 1, 5, 4, 8, 4, 8, 0, 4, 6
Offset: 1

Views

Author

Artur Jasinski, Dec 28 2020

Keywords

Comments

This is a rational number.
This constant does not belong to the infinite series of prime number products of the form: Product_{p>=2} (p^(2*n)-1)/(p^(2*n)+1),
which are rational numbers equal to zeta(4*n)/(zeta(2*n))^2 = A114362(n+1)/A114363(n+1).
This number has decimal period length 230:
1.81(0781476121562952243125904486251808972503617945007235890014471780028943
5600578871201157742402315484804630969609261939218523878437047756874095
5137481910274963820549927641099855282199710564399421128798842257597684
51519536903039073806).

Examples

			1.8107814761215629522431259...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[5005/2764,105]][[1]]
  • PARI
    default(realprecision,105)
    prodeulerrat(1+p^2/((p-1)^2*(p+1)^2))

Formula

Equals 5005/2764 = 5*7*11*13/(2^2*691).
Equals Product_{n>=1} 1+A000040(n)^2/A084920(n)^2.
Equals (13/9)*A340066.
From Vaclav Kotesovec, Dec 29 2020: (Start)
Equals 3/2 * (Product_{p prime} (p^6+1)/(p^6-1)) * (Product_{p prime} (p^4+1)/(p^4-1)).
Equals 7*zeta(6)^2 / (4*zeta(12)).
Equals -7*binomial(12, 6) * Bernoulli(6)^2 / (8*Bernoulli(12)). (End)
Equals Sum_{k>=1} A005361(k)/k^2. - Amiram Eldar, Jan 23 2024

A355433 Numbers k such that k is sqrt(k)-smooth and k+1 is sqrt(k+1)-smooth.

Original entry on oeis.org

8, 24, 48, 49, 63, 80, 120, 125, 168, 175, 195, 224, 242, 288, 324, 350, 351, 360, 363, 374, 384, 399, 440, 441, 455, 475, 494, 512, 528, 539, 560, 575, 594, 624, 675, 714, 728, 735, 759, 832, 840, 874, 896, 935, 960, 968, 1000, 1014, 1023, 1044, 1053, 1088, 1104
Offset: 1

Views

Author

Amiram Eldar, Jul 02 2022

Keywords

Comments

Numbers k such that k and k+1 are both in A048098.
This sequence is infinite: if p is an odd prime then p^2-1 is a term.

Examples

			8 is a term since 8 is sqrt(8)-smooth (2^2 <= 8) and 9 is sqrt(9)-smooth (3^2 <= 9).
		

Crossrefs

Subsequences: A084920 \ {3}, A060355, A348119.

Programs

  • Mathematica
    smQ[n_] := FactorInteger[n][[-1, 1]]^2 <= n; Select[Range[1000], smQ[#] && smQ[# + 1] &]

A318766 a(0) = 1; for n > 0, a(n) = (prime(n)^2 - 1) * a(n-1).

Original entry on oeis.org

1, 3, 24, 576, 27648, 3317760, 557383680, 160526499840, 57789539942400, 30512877089587200, 25630816755253248000, 24605584085043118080000, 33660439028338985533440000, 56549537567609495696179200000, 104503545424942348046539161600000
Offset: 0

Views

Author

Seiichi Manyama, Sep 03 2018

Keywords

Comments

The limit of A061742(n)/a(n) is zeta(2) (cf. A013661).

Crossrefs

Product_{k=1..n} (prime(k)^m - 1): A005867 (m=1), this sequence (m=2).

Programs

  • Mathematica
    a[n_]:=Product[Prime[k]^2-1, {k, 1, n}]; Join[{1},Array[a, nmax]] (* Stefano Spezia, Sep 03 2018 *)
  • PARI
    {a(n) = prod(k=1, n, prime(k)^2-1)}

Formula

a(n) = A084920(n) * a(n-1) for n > 0.
a(n) = Product_{k=1..n} (prime(k)^2 - 1).

A323278 Numbers of the form p^2-1 that have a record-breaking number of divisors, where p is prime.

Original entry on oeis.org

3, 8, 24, 48, 120, 288, 360, 840, 1680, 5040, 11880, 32760, 143640, 201600, 491400, 776160, 2042040, 3500640, 7447440, 9480240, 17297280, 34234200, 143256960, 514337040, 555120720, 569729160, 1656408600, 4283571600, 8148853440, 10951831800, 35415099720, 51437786400
Offset: 1

Views

Author

G. L. Honaker, Jr., Jan 11 2019

Keywords

Comments

a(11)-a(26) from Chuck Gaydos.

Examples

			a(7) = 360 because 360 has a record-breaking 24 divisors and 360 = p^2-1, where p = 19 is prime.
		

Crossrefs

Programs

  • Mathematica
    Block[{s = Prime[Range[10^5]]^2 - 1, t}, t = DivisorSigma[0, s]; Map[s[[FirstPosition[t, #][[1]] ]] &, Union@ FoldList[Max, t]]] (* Michael De Vlieger, Jan 19 2019 *)
  • PARI
    lista(nn) = {my(m = 0, p = 2, np); for (n=1, nn, np = p^2-1; if (((nd = numdiv(np)) > m), print1(np, ", "); m = nd); p = nextprime(p+1););} \\ Michel Marcus, Jan 12 2019
    
  • Python
    from sympy import divisor_count, nextprime
    A323278_list, p, nmax = [], 2 , -1
    while len(A323278_list) < 100:
        n = divisor_count(p**2-1)
        if n > nmax:
            nmax = n
            A323278_list.append(p**2-1)
        p = nextprime(p) # Chai Wah Wu, Feb 09 2019

Extensions

a(27)-a(32) from Daniel Suteu, Jan 12 2019

A340066 Decimal expansion of the Product_{p>=3} 1+p^2/((p-1)^2*(p+1)^2) where p are successive prime numbers A000040.

Original entry on oeis.org

1, 2, 5, 3, 6, 1, 7, 9, 4, 5, 0, 0, 7, 2, 3, 5, 8, 9, 0, 0, 1, 4, 4, 7, 1, 7, 8, 0, 0, 2, 8, 9, 4, 3, 5, 6, 0, 0, 5, 7, 8, 8, 7, 1, 2, 0, 1, 1, 5, 7, 7, 4, 2, 4, 0, 2, 3, 1, 5, 4, 8, 4, 8, 0, 4, 6, 3, 0, 9, 6, 9, 6, 0, 9, 2, 6, 1, 9, 3, 9, 2, 1, 8, 5, 2, 3, 8, 7, 8, 4, 3, 7, 0, 4, 7, 7, 5, 6, 8, 7, 4, 0, 9, 5, 5
Offset: 1

Views

Author

Artur Jasinski, Dec 28 2020

Keywords

Comments

This is a rational number.
This constant does not belong to the infinite series of prime number products of the form: Product_{p>=2} (p^(2*n)-1)/(p^(2*n)+1),
which are rational numbers equal to zeta(4*n)/zeta^2(2*n) = A114362(n+1)/A114363(n+1).
This number has decimal period length 230:
1.25(3617945007235890014471780028943560057887120115774240231548480463096960
9261939218523878437047756874095513748191027496382054992764109985528219
9710564399421128798842257597684515195369030390738060781476121562952243
12590448625180897250).

Examples

			1.25361794500723589001447178...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[3465/2764, 105]][[1]]
  • PARI
    default(realprecision, 105)
    prodeulerrat(1+p^2/((p-1)^2*(p+1)^2),1,3)

Formula

Equals 3465/2764 = 3^2*5*7*11/(2^2*691).
Equals Product_{n>=2} 1+A000040(n)^2/A084920(n)^2.
Equals (9/13)*A340065.
Previous Showing 21-30 of 34 results. Next