cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A108778 Continued fraction expansion of the Madelung constant for the NaCl structure (A085469).

Original entry on oeis.org

1, 1, 2, 1, 24, 1, 10, 1, 1, 52, 1, 8, 1, 1, 1, 4, 2, 27, 2, 3, 1, 4, 1, 1, 1, 4, 2, 2, 1, 3, 1, 2, 1, 2, 1, 1, 3, 1, 51, 1, 4, 3, 3, 4, 1, 2, 1, 14, 1, 1, 1, 1, 1, 4, 7, 1, 3, 38, 4, 1, 2, 1, 2, 1, 1, 1, 6, 4, 5, 1, 14, 2, 18, 1, 10, 2, 5, 2, 2, 2, 9, 1, 4, 1, 23, 1, 2, 1, 2, 3, 132, 343, 2, 1, 1, 4, 3, 2
Offset: 0

Views

Author

Robert G. Wilson v, Jul 18 2005

Keywords

Comments

Increasing PQ's: 1, 2, 24, 52, 132, 343, 664, 1329, 2136, ....

Examples

			1.7475645946331821906362... = 1 + 1/(1 + 1/(2 + 1/(1 + 1/(24 + ...)))). - _Harry J. Smith_, Apr 23 2009
		

Crossrefs

Cf. A085469 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[ 12Pi*Sum[ Sech[ Pi/2*Sqrt[(2j + 1)^2 + (2k + 1)^2]]^2, {j, 0, 36}, {k, 0, 36}], 98]

Extensions

Definition corrected by Leslie Glasser, Jan 24 2011
Definition corrected by Andrey Zabolotskiy, Jul 30 2020
Offset changed by Andrew Howroyd, Aug 09 2024

A096193 Engel expansion of the Madelung constant A085469.

Original entry on oeis.org

1, 2, 3, 3, 3, 3, 10, 19, 27, 32, 41, 209, 351, 809, 1235, 3337, 4109, 43834
Offset: 1

Views

Author

Gerald McGarvey, Jul 25 2004

Keywords

Examples

			1 +1/2 +1/(2*3) +1/(2*3*3) + 1/(2*3*3*3) + 1/(2*3*3*3*3) + 1/(2*3*3*3*3*10)+.... = 1.74756...
		

A005875 Theta series of simple cubic lattice; also number of ways of writing a nonnegative integer n as a sum of 3 squares (zero being allowed).

Original entry on oeis.org

1, 6, 12, 8, 6, 24, 24, 0, 12, 30, 24, 24, 8, 24, 48, 0, 6, 48, 36, 24, 24, 48, 24, 0, 24, 30, 72, 32, 0, 72, 48, 0, 12, 48, 48, 48, 30, 24, 72, 0, 24, 96, 48, 24, 24, 72, 48, 0, 8, 54, 84, 48, 24, 72, 96, 0, 48, 48, 24, 72, 0, 72, 96, 0, 6, 96, 96, 24, 48, 96, 48, 0, 36, 48, 120
Offset: 0

Views

Author

Keywords

Comments

Number of ordered triples (i, j, k) of integers such that n = i^2 + j^2 + k^2.
The Madelung Coulomb energy for alternating unit charges in the simple cubic lattice is Sum_{n>=1} (-1)^n*a(n)/sqrt(n) = -A085469. - R. J. Mathar, Apr 29 2006
a(A004215(k))=0 for k=1,2,3,... but no other elements of {a(n)} are zero. - Graeme McRae, Jan 15 2007

Examples

			Order and signs are taken into account: a(1) = 6 from 1 = (+-1)^2 + 0^2 + 0^2, a(2) = 12 from 2 = (+-1)^2 + (+-1)^2 + 0^2; a(3) = 8 from 3 = (+-1)^2 + (+-1)^2 + (+-1)^2, etc.
G.f. =  1 + 6*q + 12*q^2 + 8*q^3 + 6*q^4 + 24*q^5 + 24*q^6 + 12*q^8 + 30*q^9 + 24*q^10 + ...
		

References

  • H. Cohen, Number Theory, Vol. 1: Tools and Diophantine Equations, Springer-Verlag, 2007, p. 317.
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 107.
  • H. Davenport, The Higher Arithmetic. Cambridge Univ. Press, 7th ed., 1999, Chapter V.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 3, p. 109.
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 54.
  • L. Kronecker, Crelle, Vol. LVII (1860), p. 248; Werke, Vol. IV, p. 188.
  • C. J. Moreno and S. S. Wagstaff, Jr., Sums of Squares of Integers, Chapman and Hall, 2006, p. 43.
  • T. Nagell, Introduction to Number Theory, Wiley, 1951, p. 194.
  • W. Sierpiński, 1925. Teorja Liczb. pp. 1-410 (p.61).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. J. S. Smith, Report on the Theory of Numbers, reprinted in Vol. 1 of his Collected Math. Papers, Chelsea, NY, 1979, see p. 338, Eq. (B').

Crossrefs

Row d=3 of A122141 and of A319574, 3rd column of A286815.
Cf. A074590 (primitive solutions), A117609 (partial sums), A004215 (positions of zeros).
Analog for 4 squares: A000118.
x^2+y^2+k*z^2: A005875, A014455, A034933, A169783, A169784.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Programs

  • Julia
    # JacobiTheta3 is defined in A000122.
    A005875List(len) = JacobiTheta3(len, 3)
    A005875List(75) |> println # Peter Luschny, Mar 12 2018
    
  • Magma
    Basis( ModularForms( Gamma1(4), 3/2), 75) [1]; /* Michael Somos, Jun 25 2014 */
    
  • Maple
    (sum(x^(m^2),m=-10..10))^3; seq(coeff(%,x,n), n=0..50);
    Alternative:
    A005875list := proc(len) series(JacobiTheta3(0, x)^3, x, len+1);
    seq(coeff(%, x, j), j=0..len-1) end: A005875list(75); # Peter Luschny, Oct 02 2018
  • Mathematica
    SquaresR[3,Range[0,80]] (* Harvey P. Dale, Jul 21 2011 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^3, {q, 0, n}]; (* Michael Somos, Jun 25 2014 *)
    a[ n_] := Length @ FindInstance[ n == x^2 + y^2 + z^2, {x, y, z}, Integers, 10^9]; (* Michael Somos, May 21 2015 *)
    QP = QPochhammer; CoefficientList[(QP[q^2]^5/(QP[q]*QP[q^4])^2)^3 + O[q]^80, q] (* Jean-François Alcover, Nov 24 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum( k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n))^3, n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^5 / (eta(x + A) * eta(x^4 + A))^2)^3, n))}; /* Michael Somos, Jun 03 2012 */
    
  • PARI
    {a(n) = my(G); if( n<0, 0, G = [ 1, 0, 0; 0, 1, 0; 0, 0, 1]; polcoeff( 1 + 2 * x * Ser( qfrep( G, n)), n))}; /* Michael Somos, May 21 2015 */
    
  • Python
    # uses Python code for A004018
    from math import isqrt
    def A005875(n): return A004018(n)+(sum(A004018(n-k**2) for k in range(1,isqrt(n)+1))<<1) # Chai Wah Wu, Jun 21 2024
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [1]*3)
    Q.representation_number_list(75) # Peter Luschny, Jun 20 2014
    

Formula

A number n is representable as the sum of 3 squares iff n is not of the form 4^a (8k+7) (cf. A000378).
There is a classical formula (essentially due to Gauss):
For sums of 3 squares r_3(n): write (uniquely) -n=D(2^vf)^2, with D<0 fundamental discriminant, f odd, v>=-1. Then r_3(n) = 12L((D/.),0)(1-(D/2)) Sum_{d | f} mu(d)(D/d)sigma(f/d).
Here mu is the Moebius function, (D/2) and (D/d) are Kronecker-Legendre symbols, sigma is the sum of divisors function, L((D/.),0)=h(D)/(w(D)/2) is the value at 0 of the L function of the quadratic character (D/.), equal to the class number h(D) divided by 2 or 3 in the special cases D=-4 and -3. - Henri Cohen (Henri.Cohen(AT)math.u-bordeaux1.fr), May 12 2010
a(n) = 3*T(n) if n == 1,2,5,6 mod 8, = 2*T(n) if n == 3 mod 8, = 0 if n == 7 mod 8 and = a(n/4) if n == 0 mod 4, where T(n) = A117726(n). [Moreno-Wagstaff].
"If 12E(n) is the number of representations of n as a sum of three squares, then E(n) = 2F(n) - G(n) where G(n) = number of classes of determinant -n, F(n) = number of uneven classes." - Dickson, quoting Kronecker. [Cf. A117726.]
a(n) = Sum_{d^2|n} b(n/d^2), where b() = A074590() gives the number of primitive solutions.
Expansion of phi(q)^3 in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Oct 25 2006.
Euler transform of period 4 sequence [ 6, -9, 6, -3, ...]. - Michael Somos, Oct 25 2006
G.f.: (Sum_{k in Z} x^(k^2))^3.
a(8*n + 7) = 0. a(4*n) = a(n).
a(n) = A004015(2*n) = A014455(2*n) = A004013(4*n) = A169783(4*n). a(4*n + 1) = 6 * A045834(n). a(8*n + 3) = 8 * A008443(n). a(8*n + 5) = 24 * A045831(n). - Michael Somos, Jun 03 2012
a(4*n + 2) = 12 * A045828(n). - Michael Somos, Sep 03 2014
a(n) = (-1)^n * A213384(n). - Michael Somos, May 21 2015
a(n) = (6/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017
a(n) = A004018(n) + 2*Sum_{k=1..floor(sqrt(n))} A004018(n - k^2). - Daniel Suteu, Aug 27 2021
Convolution cube of A000122. Convolution of A004018 and A000122. - R. J. Mathar, Aug 03 2025

Extensions

More terms from James Sellers, Aug 22 2000

A185576 Decimal expansion of Born's basic potential Pi_0.

Original entry on oeis.org

2, 8, 3, 7, 2, 9, 7, 4, 7, 9, 4, 8, 0, 6, 1, 9, 4, 7, 6, 6, 6, 5, 9, 1, 7, 1, 0, 4, 6, 0, 7, 7, 3, 8, 8, 2, 2, 3, 8, 9, 2, 1, 8, 7, 0, 2, 1, 5, 8, 4, 8, 3, 5, 9, 9, 0, 0, 3, 7, 1, 9, 0, 0, 6, 9, 9, 9, 2, 4, 7, 7, 1, 1, 1, 6, 2, 2, 7, 3, 3, 0, 9, 4, 7, 4, 0, 4, 1, 5, 3, 0, 7, 9, 2, 7, 1, 1, 0, 3, 5
Offset: 1

Views

Author

R. J. Mathar, Jan 31 2011

Keywords

Comments

Decimal expansion of Sum'_{m,n,p = -infinity..infinity} 1/(m^2 + n^2 + p^2)^s, analytic continuation to s=1/2. The prime at the sum symbol means the term at m=n=p=0 is omitted.

Examples

			2.8372974794806194766659171046...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 1.10 Madelung's constant, p. 79.

Crossrefs

Programs

  • Mathematica
    digits = 100; k0 = 10; dk = 10; Clear[s]; s[k_] := s[k] = 7*(Pi/6) - 19/2*Log[2] + 4*Sum[(3 + 3*(-1)^m + (-1)^(m + n)) * Csch[Pi*Sqrt[m^2 + n^2]]/Sqrt[m^2 + n^2], {m, 1, k}, {n, 1, k}] // N[#, digits + 10] &; s[k0]; s[k = k0 + dk]; While[RealDigits[s[k], 10, digits + 5][[1]] != RealDigits[s[k - dk], 10, digits + 5][[1]], Print["s(", k, ") = ", s[k]]; k = k + dk]; RealDigits[s[k], 10, digits] // First (* Jean-François Alcover, Sep 10 2014 *)

Formula

Equals A085469/3 + A185577 + A185578.

Extensions

More terms from Jean-François Alcover, Sep 10 2014

A185577 Decimal expansion of Sum'_{m,n,p = -infinity..infinity} (-1)^m/sqrt(m^2 + n^2 + p^2), negated.

Original entry on oeis.org

7, 7, 4, 3, 8, 6, 1, 4, 1, 4, 2, 4, 0, 0, 2, 8, 1, 5, 2, 1, 2, 7, 5, 1, 3, 8, 6, 4, 0, 6, 7, 8, 8, 7, 9, 8, 8, 5, 3, 1, 7, 1, 0, 4, 8, 1, 0, 3, 2, 1, 4, 4, 5, 9, 3, 0, 7, 2, 4, 0, 9, 6, 6, 4, 0, 2, 1, 4, 3, 5, 1, 9, 2, 1, 6, 3, 0, 6, 7, 8, 8, 7, 7, 8, 2, 3, 0, 9, 9, 7, 6, 7, 0, 9, 7, 0, 4, 8, 1, 6, 2, 9, 6, 6, 9
Offset: 0

Views

Author

R. J. Mathar, Jan 31 2011

Keywords

Comments

The prime at the sum symbol means that the term at m=n=p=0 is omitted.

Examples

			0.77438614142400281521275138640678...
		

Crossrefs

Programs

  • Mathematica
    digits = 105; Clear[f]; f[n_, p_] := f[n, p] =(s = Sqrt[n^2 + p^2]; ((2 + (-1)^n)*Csch[s*Pi])/s // N[#, digits+10]&); f[m_] := f[m] = Pi/2 - (7*Log[2])/2 + 4*Sum[f[n, p], {n, 1, m}, {p, 1, m}] // RealDigits[#, 10, digits+10]& // First; f[0]; f[m=10]; While[f[m] != f[m-10], Print[m]; m = m+10]; f[m][[1 ;; digits]] (* Jean-François Alcover, Feb 20 2013 *)

Formula

sqrt(3)*(3*(this value) + A085469)/4 = A181152.
Equals Pi/2 - 7*log(2)/2 + 4*Sum_{n>=1, p>=1} (2+(-1)^n) *cosech(d*Pi)/d with d = sqrt(n^2 + p^2).

Extensions

More terms from Jean-François Alcover, Feb 20 2013

A090734 Decimal expansion of 4th Madelung constant (negated).

Original entry on oeis.org

1, 8, 3, 9, 3, 9, 9, 0, 8, 4, 0, 4, 5, 0, 4, 7, 0, 6, 6, 2, 4, 7, 3, 0, 5, 4, 7, 9, 5, 6, 7, 2, 3, 0, 4, 7, 6, 4, 2, 2, 7, 8, 3, 5, 9, 4, 8, 1, 7, 7, 3, 0, 5, 7, 9, 1, 6, 7, 9, 7, 8, 6, 7, 7, 5, 7, 2, 8, 1, 8, 2, 5, 2, 6, 4, 3, 7, 3, 3, 5, 2, 2, 8, 4, 1, 5, 8, 7, 4, 1, 3, 3, 9, 6, 6, 0, 3, 7, 7, 6, 0, 2, 9, 3, 6
Offset: 1

Views

Author

Benoit Cloitre, Jan 18 2004

Keywords

Examples

			-1.83939908404504706624730547956723047642278359481773...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 77.

Crossrefs

Programs

  • Mathematica
    RealDigits[8*(5 - 3*Sqrt[2])*Zeta[1/2]*Zeta[-1/2], 10, 120][[1]] (* Amiram Eldar, May 26 2023 *)
  • PARI
    8*(5-3*sqrt(2))*zeta(1/2)*zeta(-1/2) \\ Charles R Greathouse IV, Jun 07 2016

Formula

M_4 = -8*(5-3*sqrt(2))*zeta(1/2)*zeta(-1/2) = -8 *(A157122-6) * A059750 * A211113.

A247040 Decimal expansion of M_6, the 6th Madelung constant.

Original entry on oeis.org

1, 9, 6, 5, 5, 5, 7, 0, 3, 9, 0, 0, 9, 0, 7, 8, 2, 8, 1, 3, 1, 2, 3, 1, 3, 5, 5, 5, 7, 3, 5, 1, 8, 5, 3, 6, 7, 8, 6, 8, 9, 7, 6, 7, 2, 8, 4, 4, 6, 4, 6, 4, 5, 1, 1, 7, 0, 8, 5, 6, 5, 2, 8, 8, 7, 8, 1, 7, 9, 6, 4, 0, 1, 4, 3, 2, 5, 3, 5, 4, 5, 7, 6, 4, 9, 3, 1, 3, 4, 2, 6, 6, 6, 3, 6, 7, 2, 6, 7, 6, 4, 2, 9, 8
Offset: 1

Views

Author

Jean-François Alcover, Sep 10 2014

Keywords

Examples

			-1.9655570390090782813123135557351853678689767284464645117...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 1.10 Madelung's constant, p. 77.

Crossrefs

Programs

  • Mathematica
    beta[x_] := (Zeta[x, 1/4] - Zeta[x, 3/4])/4^x; M6 = (3/Pi^2)*(4*(Sqrt[2]-1)*Zeta[1/2]*beta[5/2] - (4*Sqrt[2]-1)*Zeta[5/2]*beta[1/2]); RealDigits[M6, 10, 104][[1]]
  • PARI
    th4(x)=1+2*sumalt(n=1, (-1)^n*x^n^2)
    intnum(x=0, [oo, 1], (th4(exp(-x))^6-1)/sqrt(Pi*x)) \\ Charles R Greathouse IV, Jun 07 2016
    
  • PARI
    th4(x)=1+2*sumalt(n=1, (-1)^n*x^n^2)
    intnum(x=0, [oo, 1], (th4(exp(-x))^6-1)/sqrt(Pi*x)) \\ Charles R Greathouse IV, Jun 06 2016

Formula

M6 = (3/Pi^2)*(4*(sqrt(2)-1)*zeta(1/2)*beta(5/2) - (4*sqrt(2)-1)*zeta(5/2)*beta(1/2)), where beta is Dirichlet's "beta" function.

A181152 Decimal expansion of Madelung constant (negated) for the CsCl structure.

Original entry on oeis.org

1, 7, 6, 2, 6, 7, 4, 7, 7, 3, 0, 7, 0, 9, 8, 8, 3, 9, 7, 9, 3, 5, 6, 7, 3, 3, 2, 0, 6, 3, 8, 6, 4, 4, 2, 9, 1, 1, 7, 0, 5, 2, 8, 6, 1, 9, 5, 8, 8, 5, 8, 5, 2, 8, 0, 6, 4, 9, 4, 1, 8, 4, 3, 7, 7, 2, 7, 9, 6, 6, 2, 2, 3, 7, 6, 9, 3, 4, 0, 8, 3, 0, 4, 7, 1, 5, 0, 9, 4, 5, 8, 1, 1, 2, 1, 6, 9, 8, 8, 9, 0, 8, 5, 6, 9
Offset: 1

Views

Author

Leslie Glasser, Jan 24 2011

Keywords

Comments

This is often quoted for a different lattice constant and multiplied by 2/sqrt(3) = 1.1547... = 10*A020832, which gives 1.76267...*1.1547... = 2.03536151... given in Zucker's Table 5 as the alpha for the CsCl structure, and by Sakamoto as the M_d for the B2 lattice. Given Zucker's b(1) = 0.774386141424002815... = A185577, this constant here is sqrt(3)*(3*b(1)+A085469)/4. - R. J. Mathar, Jan 28 2011
The CsCl structure consists of two interpenetrating simple cubic lattices of ions with charges +1 and -1, together occupying all the sites of the body-centered cubic lattice. - Andrey Zabolotskiy, Oct 21 2019

Crossrefs

Programs

  • Mathematica
    digits = 105;
    m0 = 50; (* initial number of terms *)
    dm = 10; (* number of terms increment *)
    dd = 10; (* precision excess *)
    Clear[f];
    f[n_, p_] := f[n, p] = (s = Sqrt[n^2 + p^2]; ((2 + (-1)^n) Csch[s*Pi])/s // N[#, digits + dd]&);
    f[m_] := f[m] = Pi/2 - (7 Log[2])/2 + 4 Sum[f[n, p], {n, 1, m}, {p, 1, m}];
    f[m = m0];
    f[m += dm];
    While[Abs[f[m] - f[m - dm]] > 10^(-digits - dd), Print["f(", m, ") = ", f[m]]; m += dm];
    A185577 = f[m];
    Clear[g];
    g[m_] := g[m] = 12 Pi Sum[Sech[(Pi/2) Sqrt[(2 j + 1)^2 + (2 k + 1)^2]]^2, {j, 0, m}, {k, 0, m}] // N[#, digits + dd]&;
    g[m = m0];
    g[m += dm];
    While[Abs[g[m] - g[m - dm]] > 10^(-digits - dd), Print["g(", m, ") = ", g[m]]; m += dm];
    A085469 = g[m];
    A181152 = Sqrt[3] (A085469 - 3 A185577)/4;
    RealDigits[A181152, 10, digits][[1]] (* Jean-François Alcover, May 07 2021 *)

Extensions

More terms (using the above comment from R. J. Mathar and terms from the b-files for A085469 and A185577) from Jon E. Schoenfield, Mar 10 2018
Definition corrected by Andrey Zabolotskiy, Oct 21 2019
a(88)-a(105) from Jean-François Alcover, May 07 2021

A261805 Decimal expansion of M_8, the 8th Madelung constant (negated).

Original entry on oeis.org

2, 0, 5, 2, 4, 6, 6, 8, 2, 7, 2, 6, 9, 2, 7, 1, 2, 2, 8, 1, 7, 6, 3, 3, 7, 7, 9, 9, 1, 7, 3, 3, 8, 3, 9, 9, 1, 7, 0, 8, 3, 7, 7, 5, 2, 9, 9, 6, 5, 5, 8, 2, 1, 9, 3, 2, 3, 7, 3, 2, 4, 5, 7, 7, 5, 3, 4, 9, 9, 4, 1, 3, 2, 8, 7, 5, 2, 7, 0, 6, 1, 4, 6, 9, 8, 5, 1, 9, 8, 8, 3, 9, 4, 1, 3, 1, 7, 5, 1, 0, 8, 8, 1
Offset: 1

Views

Author

Jean-François Alcover, Sep 01 2015

Keywords

Examples

			-2.052466827269271228176337799173383991708377529965582...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 1.10 Madelung's constant, p. 77.

Crossrefs

Programs

  • Mathematica
    M8 = (15/(4*Pi^3))*(8*Sqrt[2] - 1)*Zeta[1/2]*Zeta[7/2]; RealDigits[M8, 10, 103] // First
  • PARI
    th4(x)=1+2*sumalt(n=1, (-1)^n*x^n^2)
    intnum(x=0, [oo, 1], (th4(exp(-x))^8-1)/sqrt(Pi*x)) \\ Charles R Greathouse IV, Jun 06 2016

Formula

M_8 = (15/(4*Pi^3))*(8*sqrt(2) - 1)*zeta(1/2)*zeta(7/2).

A336274 Decimal expansion of the dimensionless coefficient of the Coulomb self-energy of a uniformly charged three-dimensional cube.

Original entry on oeis.org

9, 4, 1, 1, 5, 6, 3, 2, 2, 1, 9, 4, 8, 3, 0, 0, 8, 0, 0, 5, 2, 8, 0, 0, 4, 1, 9, 4, 3, 4, 1, 8, 3, 7, 9, 3, 9, 2, 6, 2, 3, 1, 4, 4, 0, 1, 5, 5, 3, 5, 3, 9, 8, 0, 2, 7, 6, 4, 6, 6, 1, 5, 7, 2, 8, 8, 6, 0, 5, 1, 8, 9, 8, 0, 5, 3, 0, 1, 7, 9, 0, 6, 3, 6, 1, 9, 9
Offset: 0

Views

Author

Amiram Eldar, Jul 15 2020

Keywords

Comments

Coulomb self-energy of a system of electric charges is the total electrostatic potential energy of interaction between charge elements.
For a uniformly charged three-dimensional cube with a total charge Q and an edge length L it is equal to c * k*Q^2/L, where k is the Coulomb constant (A182999) and c is this constant.

Examples

			0.94115632219483008005280041943418379392623144015535...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(1 + Sqrt[2] - 2*Sqrt[3])/5 - Pi/3 + Log[(1 + Sqrt[2])*(2 + Sqrt[3])], 10, 100][[1]]
  • PARI
    (1 + sqrt(2) - 2*sqrt(3))/5 - Pi/3 + log((1+sqrt(2))*(2+sqrt(3))) \\ Michel Marcus, Jul 15 2020

Formula

Equals (1 + sqrt(2) - 2*sqrt(3))/5 - Pi/3 + log((1 + sqrt(2)) * (2 + sqrt(3))).
Showing 1-10 of 19 results. Next