cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 48 results. Next

A296205 Numbers k such that Product_{d|k^2, gcd(d,k^2/d) is prime} gcd(d,k^2/d) = k^2.

Original entry on oeis.org

1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 26, 28, 33, 34, 35, 36, 38, 39, 44, 45, 46, 50, 51, 52, 55, 57, 58, 62, 63, 65, 68, 69, 74, 75, 76, 77, 82, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 100, 106, 111, 115, 116, 117, 118, 119, 122, 123, 124, 129, 133, 134, 141, 142, 143, 145, 146, 147, 148, 153, 155, 158, 159, 161
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2017

Keywords

Comments

Except for a(1) = 1, these appear to be cubefree numbers with two distinct prime factors, or Heinz numbers of integer partitions with two distinct parts, none appearing more than twice. The enumeration of these partitions by sum is given by A307370. Equivalently, except for a(1) = 1, this sequence is the intersection of A004709 and A007774. - Gus Wiseman, Jul 03 2019

Crossrefs

Cf. A006881, A054753, A085986 (seem to be subsequences).

Programs

  • Maple
    filter:= proc(k) local d,r,v;
       r:= 1;
       for d in numtheory:-divisors(k^2) do
         v:= igcd(d,k^2/d);
         if isprime(v) then r:= r*v fi
       od;
       r = k^2
    end proc:
    select(filter, [$1..200]); # Robert Israel, Feb 20 2024

Formula

a(n) = A000196(A296204(n)).

A336530 Number of triples of divisors d_i < d_j < d_k of n such that gcd(d_i, d_j, d_k) > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 5, 0, 0, 0, 4, 0, 5, 0, 5, 0, 0, 0, 23, 0, 0, 1, 5, 0, 12, 0, 10, 0, 0, 0, 36, 0, 0, 0, 23, 0, 12, 0, 5, 5, 0, 0, 62, 0, 5, 0, 5, 0, 23, 0, 23, 0, 0, 0, 87, 0, 0, 5, 20, 0, 12, 0, 5, 0, 12, 0, 120, 0, 0, 5, 5, 0, 12, 0, 62, 4
Offset: 1

Views

Author

Michel Lagneau, Oct 04 2020

Keywords

Comments

Number of elements in the set {(x, y, z): x|n, y|n, z|n, x < y < z, GCD(x, y, z) > 1}.
Every element of the sequence is repeated indefinitely, for instance:
a(n) = 0 for n = 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, ... (Numbers with at most 2 prime factors (counted with multiplicity). See A037143);
a(n) = 1 for n = 8, 27, 125, 343, 1331, 2197, 4913,... (cubes of primes. See A030078);
a(n) = 4 for n = 16, 81, 625, 2401, 14641, 28561, ... (prime(n)^4. See A030514);
a(n) = 5 for n = 12, 18, 20, 28, 44, 45, ... (Numbers which are the product of a prime and the square of a different prime (p^2 * q). See A054753);
a(n) = 12 for n = 30, 42, 66, 70, 78, 102, 105, 110,... (Sphenic numbers: products of 3 distinct primes. See A007304);
a(n) = 20 for n = 64, 729, 15625, 117649, ... (Numbers with 7 divisors. 6th powers of primes. See A030516);
a(n) = 23 for n = 24, 40, 54, 56, 88, 104, 135, 136, ... (Product of the cube of a prime (A030078) and a different prime. See A065036);
a(n) = 36 for n = 36, 100, 196, 225, 441, 484, 676,... (Squares of the squarefree semiprimes (p^2*q^2). See A085986);
a(n) = 62 for n = 48, 80, 112, 162, 176, 208, 272, ... (Product of the 4th power of a prime (A030514) and a different prime (p^4*q). See A178739);
a(n) = 87 for n = 60, 84, 90, 126, 132, 140, 150, 156, ... (Product of exactly four primes, three of which are distinct (p^2*q*r). See A085987);
a(n) = 120 for n = 72, 108, 200, 392, 500, 675, 968, ... (Numbers of the form p^2*q^3, where p,q are distinct primes. See A143610);
It is possible to continue with a(n) = 130, 235, 284, 289, 356, ...

Examples

			a(12) = 5 because the divisors of 12 are {1, 2, 3, 4, 6, 12} and GCD(d_i, d_j, d_k) > 1 for the 5 following triples of divisors: (2,4,6), (2,4,12), (2,6,12), (3,6,12) and (4,6,12).
		

Crossrefs

Cf. A275387.

Programs

  • Maple
    with(numtheory):nn:=100:
    for n from 1 to nn do:
    it:=0:d:=divisors(n):n0:=nops(d):
      for i from 1 to n0-2 do:
       for j from i+1 to n0-1 do:
         for k from j+1 to n0 do:
        if igcd(d[i],d[j],d[k])> 1
           then
           it:=it+1:
           else
          fi:
         od:
         od:
         od:
        printf(`%d, `,it):
       od:
  • Mathematica
    Array[Count[GCD @@ # & /@ Subsets[Divisors[#], {3}], ?(# > 1 &)] &, 81] (* _Michael De Vlieger, Oct 05 2020 *)
  • PARI
    a(n) = my(d=divisors(n)); sum(i=1, #d-2, sum (j=i+1, #d-1, sum (k=j+1, #d, gcd([d[i], d[j], d[k]]) > 1))); \\ Michel Marcus, Oct 31 2020
    
  • PARI
    a(n) = {my(f = factor(n), vp = vecprod(f[,1]), d = divisors(vp), res = 0);
    for(i = 2, #d, res-=binomial(numdiv(n/d[i]), 3)*(-1)^omega(d[i])); res} \\ David A. Corneth, Nov 01 2020

Extensions

Name clarified by editors, Oct 31 2020

A177493 Products of cubes of 2 or more distinct primes.

Original entry on oeis.org

216, 1000, 2744, 3375, 9261, 10648, 17576, 27000, 35937, 39304, 42875, 54872, 59319, 74088, 97336, 132651, 166375, 185193, 195112, 238328, 274625, 287496, 328509, 343000, 405224, 456533, 474552, 551368, 614125, 636056, 658503, 753571, 804357, 830584, 857375
Offset: 1

Views

Author

Keywords

Examples

			216 = 2^3 * 3^3.
9261 = 3^3 * 7^3.
27000 = 2^3 * 3^3 * 5^3.
		

Crossrefs

Programs

  • Maple
    q:= n-> not isprime(n) and numtheory[issqrfree](n):
    map(x-> x^3, select(q, [$4..120]))[];  # Alois P. Heinz, Aug 02 2024
  • Mathematica
    f1[n_]:=Length[Last/@FactorInteger[n]]; f2[n_]:=Union[Last/@FactorInteger[n]]; lst={};Do[If[f1[n]>1&&f2[n]=={3},AppendTo[lst,n]],{n,0,9!}];lst
    Reap[Do[{p, e}=Transpose[FactorInteger[n]]; If[Length[p]>1 && Union[e]=={3}, Sow[n]], {n, 343000}]][[2, 1]]
  • PARI
    [k^3 | k<-[1..100], k>1 && !isprime(k) && issquarefree(k)] \\ Andrew Howroyd, Jan 14 2020
    
  • Python
    from math import isqrt
    from sympy import primepi, mobius
    def A177493(n):
        def f(x): return n+1+primepi(x)+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n+1, f(n+1)
        while m != k:
            m, k = k, f(k)
        return m**3 # Chai Wah Wu, Aug 02 2024

Formula

a(n) = A120944(n)^3. - R. J. Mathar, Dec 06 2010

Extensions

Definition corrected by R. J. Mathar, Dec 06 2010
Terms a(25) and beyond from Andrew Howroyd, Jan 14 2020

A262202 Number of divisors d | n such that d^2 < n and d^2 does not divide n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 0, 1, 1, 1, 1, 0, 1, 1, 2, 0, 3, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 1, 2, 1, 1, 0, 4, 0, 1, 1, 0, 1, 3, 0, 1, 1, 3, 0, 2, 0, 1, 1, 1, 1, 3, 0, 2, 0, 1, 0, 4, 1, 1, 1, 2, 0, 4, 1, 1, 1, 1, 1, 3, 0
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 15 2015

Keywords

Comments

a(n) = 0 if n is a prime power.
From Michael De Vlieger, Sep 15 2015: (Start)
Let k be a divisor d | n such that d^2 < n and d^2 does not divide n.
a(n) <= A010846(n), as any k is regular to n, i.e., k is a product less than n of the prime divisors of n.
a(n) <= A045763(n), as any k neither divides nor is coprime to n.
a(n) <= A243822(n), as any k is a "semidivisor" of n, i.e., k is a product less than n of the prime divisors of n that do not divide n.
(End)
a(n) = 0 if and only if n is a prime power (A000961). - Robert Israel, Sep 22 2015
From Robert Israel, Oct 22 2015: (Start)
a(n) = 1 if n = p^i * q^j where p and q are distinct primes and 1 <= i,j <= 2, i.e. n is in A006881, A054753 or A085986.
This appears to be "if and only if". (End)

Examples

			a(6) = 1 because (1, 4, 9, 36) are squares of divisors of 6 and only 4 is proper non-divisor of 6.
		

Crossrefs

Programs

  • Maple
    f:= n -> nops(select(t -> (t^2 < n) and (n mod t^2 <> 0), numtheory:-divisors(n))):
    map(f, [$1..100]); # Robert Israel, Sep 22 2015
  • Mathematica
    f[n_] := Block[{d = Divisors@ n}, Select[d^2, And[Mod[n, #] != 0, # < n] &]]; Length@ f@ # & /@ Range@ 120 (* Michael De Vlieger, Sep 15 2015 *)
  • PARI
    a(n) = sumdiv(n, d, (d^2 < n) && (n % d^2)); \\ Michel Marcus, Sep 15 2015

Extensions

Definition and a(80) corrected by Charles R Greathouse IV, Sep 15 2015

A272190 Either 6th power of a prime, or product of the square of two different primes.

Original entry on oeis.org

36, 64, 100, 196, 225, 441, 484, 676, 729, 1089, 1156, 1225, 1444, 1521, 2116, 2601, 3025, 3249, 3364, 3844, 4225, 4761, 5476, 5929, 6724, 7225, 7396, 7569, 8281, 8649, 8836, 9025, 11236, 12321, 13225, 13924, 14161, 14884, 15129, 15625, 16641, 17689, 17956, 19881
Offset: 1

Views

Author

Paolo P. Lava, Apr 22 2016

Keywords

Comments

Numbers such that the sum of the number of divisors of their aliquot parts is three times the number of their divisors.

Examples

			36 = 2^2 * 3^2;  64 = 2^6.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n;  for n from 2 to q do a:=sort([op(divisors(n))]);
    if 3*tau(n)= add(tau(a[k]),k=1..nops(a)-1) then print(n); fi; od; end: P(10^7);
  • Mathematica
    Select[Range[20000], MemberQ[{{6}, {2, 2}}, FactorInteger[#][[;; , 2]]] &] (* Amiram Eldar, Oct 03 2023 *)
  • PARI
    isok(n) = 3*numdiv(n) == sumdiv(n, d, (n!=d)*numdiv(d)); \\ Michel Marcus, Apr 22 2016
    
  • PARI
    is(n) = {my(e = factor(n)[, 2]~); e == [6] || e == [2, 2];} \\ Amiram Eldar, Oct 03 2023

Formula

Sum_{n>=1} 1/a(n) = (P(2)^2 - P(4))/2 + P(6) = (A085548^2 - A085964)/2 + A085966 = 0.080837..., where P is the prime zeta function. - Amiram Eldar, Oct 03 2023

A275345 Characteristic polynomials of a square matrix based on A051731 where A051731(1,N)=1 and A051731(N,N)=0 and where N=size of matrix, analogous to the Redheffer matrix.

Original entry on oeis.org

1, 1, -1, -1, -1, 1, -1, 0, 2, -1, 0, 0, 2, -3, 1, -1, 2, 1, -5, 4, -1, 1, -3, 5, -8, 9, -5, 1, -1, 4, -4, -5, 15, -14, 6, -1, 0, -1, 6, -17, 29, -31, 20, -7, 1, 0, 0, 2, -13, 36, -55, 50, -27, 8, -1, 1, -7, 23, -50, 84, -112, 112, -78, 35, -9, 1
Offset: 0

Views

Author

Mats Granvik, Jul 24 2016

Keywords

Comments

From Mats Granvik, Sep 30 2017: (Start)
Conjecture: The largest absolute value of the eigenvalues of these characteristic polynomials appear to have the same prime signature in the factorization of the matrix sizes N.
In other words: Let b(N) equal the sequence of the largest absolute values of the eigenvalues of the characteristic polynomials of the matrices of size N. b(N) is then a sequence of truncated eigenvalues starting:
b(N=1..infinity)
= 1.00000, 1.61803, 1.61803, 2.00000, 1.61803, 2.20557, 1.61803, 2.32472, 2.00000, 2.20557, 1.61803, 2.67170, 1.61803, 2.20557, 2.20557, 2.61803, 1.61803, 2.67170, 1.61803, 2.67170, 2.20557, 2.20557, 1.61803, 3.08032, 2.00000, 2.20557, 2.32472, 2.67170, 1.61803, 2.93796, 1.61803, 2.89055, 2.20557, 2.20557, 2.20557, 3.21878, 1.61803, 2.20557, 2.20557, 3.08032, 1.61803, 2.93796, 1.61803, 2.67170, 2.67170, 2.20557, 1.61803, 3.45341, 2.00000, 2.67170, 2.20557, 2.67170, 1.61803, 3.08032, 2.20557, 3.08032, 2.20557, 2.20557, 1.61803, 3.53392, 1.61803, 2.20557, 2.67170, ...
It then appears that for n = 1,2,3,4,5,...,infinity we have the table:
Prime signature: b(Axxxxxx(n)) = Largest abs(eigenvalue):
p^0 : b(1) = 1.0000000000000000000000000000...
p : b(A000040(n)) = 1.6180339887498949025257388711...
p^2 : b(A001248(n)) = 2.0000000000000000000000000000...
p*q : b(A006881(n)) = 2.2055694304005917238953315973...
p^3 : b(A030078(n)) = 2.3247179572447480566665944934...
p^2*q : b(A054753(n)) = 2.6716998816571604358216518448...
p^4 : b(A030514(n)) = 2.6180339887498917939012699207...
p^3*q : b(A065036(n)) = 3.0803227214906021558249449299...
p*q*r : b(A007304(n)) = 2.9379558827528557962693867011...
p^5 : b(A050997(n)) = 2.8905508875432590620846440288...
p^2*q^2 : b(A085986(n)) = 3.2187765853016649941764626419...
p^4*q : b(A178739(n)) = 3.4534111136673804054453285061...
p^2*q*r : b(A085987(n)) = 3.5339198574905377192578725953...
p^6 : b(A030516(n)) = 3.1478990357047909043330946587...
p^3*q^2 : b(A143610(n)) = 3.7022736187975437971431347250...
p^5*q : b(A178740(n)) = 3.8016448153137023524550386355...
p^3*q*r : b(A189975(n)) = 4.0600260453688532535920785448...
p^7 : b(A092759(n)) = 3.3935083220984414431597997463...
p^4*q^2 : b(A189988(n)) = 4.1453038440113498808159420150...
p^2*q^2*r: b(A179643(n)) = 4.2413382309993874486053755390...
p^6*q : b(A189987(n)) = 4.1311805192254587026923218218...
p*q*r*s : b(A046386(n)) = 3.8825338629275134572083061357...
...
b(Axxxxxx(1)) in the sequences above, is given by A025487.
(End)
First column in the coefficients of the characteristic polynomials is the Möbius function A008683.
Row sums of coefficients start: 0, -1, 0, 0, 0, 0, 0, 0, 0, ...
Third diagonal is a signed version of A000096.
Most of the eigenvalues are equal to 1. The number of eigenvalues equal to 1 are given by A075795 for n>1.
The first three of the eigenvalues above can be calculated as nested radicals. The fourth eigenvalue 2.205569430400590... minus 1 = 1.205569430400590... is also a nested radical.

Examples

			{
{ 1},
{ 1, -1},
{-1, -1,  1},
{-1,  0,  2,  -1},
{ 0,  0,  2,  -3,  1},
{-1,  2,  1,  -5,  4,   -1},
{ 1, -3,  5,  -8,  9,   -5,   1},
{-1,  4, -4,  -5, 15,  -14,   6,  -1},
{ 0, -1,  6, -17, 29,  -31,  20,  -7,  1},
{ 0,  0,  2, -13, 36,  -55,  50, -27,  8, -1},
{ 1, -7, 23, -50, 84, -112, 112, -78, 35, -9, 1}
}
		

Crossrefs

Programs

  • Mathematica
    Clear[x, AA, nn, s]; Monitor[AA = Flatten[Table[A = Table[Table[If[Mod[n, k] == 0, 1, 0], {k, 1, nn}], {n, 1, nn}]; MatrixForm[A]; a = A[[1, nn]]; A[[1, nn]] = A[[nn, nn]]; A[[nn, nn]] = a; CoefficientList[CharacteristicPolynomial[A, x], x], {nn, 1, 10}]], nn]

A307341 Products of four primes, not all distinct.

Original entry on oeis.org

16, 24, 36, 40, 54, 56, 60, 81, 84, 88, 90, 100, 104, 126, 132, 135, 136, 140, 150, 152, 156, 184, 189, 196, 198, 204, 220, 225, 228, 232, 234, 248, 250, 260, 276, 294, 296, 297, 306, 308, 315, 328, 340, 342, 344, 348, 350, 351, 364, 372, 375, 376, 380, 414
Offset: 1

Views

Author

Kalle Siukola, Apr 02 2019

Keywords

Comments

Numbers with exactly four prime factors (counted with multiplicity) but fewer than four distinct prime factors.
Numbers n such that bigomega(n) = 4 and omega(n) < 4.

Crossrefs

Setwise difference of A014613 and A046386.
Union of A030514, A065036, A085986 and A085987.

Programs

  • PARI
    isok(n) = (bigomega(n) == 4) && (omega(n) < 4); \\ Michel Marcus, Apr 03 2019
  • Python
    import sympy
    def bigomega(n): return sympy.primeomega(n)
    def omega(n): return len(sympy.primefactors(n))
    print([n for n in range(1, 1000) if bigomega(n) == 4 and omega(n) < 4])
    

A343511 a(n) = 1 + Sum_{d|n, d < n} a(d)^2.

Original entry on oeis.org

1, 2, 2, 6, 2, 10, 2, 42, 6, 10, 2, 146, 2, 10, 10, 1806, 2, 146, 2, 146, 10, 10, 2, 23226, 6, 10, 42, 146, 2, 314, 2, 3263442, 10, 10, 10, 42814, 2, 10, 10, 23226, 2, 314, 2, 146, 146, 10, 2, 542731938, 6, 146, 10, 146, 2, 23226, 10, 23226, 10, 10, 2, 141578, 2, 10, 146, 10650056950806, 10
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 17 2021

Keywords

Comments

a(n) depends only on the prime signature of n (see formulas). - Bernard Schott, Apr 24 2021

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          1+add(a(d)^2, d=numtheory[divisors](n) minus {n})
        end:
    seq(a(n), n=1..65);  # Alois P. Heinz, Apr 17 2021
  • Mathematica
    a[n_] := a[n] = 1 + Sum[If[d < n, a[d]^2, 0], {d, Divisors[n]}]; Table[a[n], {n, 65}]
  • PARI
    lista(nn) = {my(va = vector(nn)); for (n=1, nn, va[n] = 1 + sumdiv(n, d, if (dMichel Marcus, Apr 18 2021
  • Python
    from functools import lru_cache
    from sympy import divisors
    @lru_cache(maxsize=None)
    def A343511(n): return 1+sum(A343511(d)**2 for d in divisors(n) if d < n) # Chai Wah Wu, Apr 17 2021
    

Formula

G.f.: x / (1 - x) + Sum_{n>=1} a(n)^2 * x^(2*n) / (1 - x^n).
a(p^k) = A007018(k) for p prime.
From Bernard Schott, Apr 24 2021: (Start)
a(A006881(n)) = 10 for signature [1, 1].
a(A054753(n)) = 146 for signature [2, 1].
a(A007304(n)) = 314 for signature [1, 1, 1].
a(A065036(n)) = 23226 for signature [3, 1].
a(A085986(n)) = 42814 for signature [2, 2].
a(A085987(n)) = 141578 for signature [2, 1, 1]. (End)

A374458 Squares of exponentially odd numbers (A268335).

Original entry on oeis.org

1, 4, 9, 25, 36, 49, 64, 100, 121, 169, 196, 225, 289, 361, 441, 484, 529, 576, 676, 729, 841, 900, 961, 1024, 1089, 1156, 1225, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 2116, 2209, 2601, 2809, 2916, 3025, 3136, 3249, 3364, 3481, 3721, 3844, 4225, 4356, 4489
Offset: 1

Views

Author

Amiram Eldar, Jul 09 2024

Keywords

Comments

Numbers whose exponents in their prime factorization are all congruent to 2 (mod 4).

Crossrefs

Programs

  • Mathematica
    Select[Range[100], AllTrue[FactorInteger[#][[;;, 2]], OddQ] &]^2
  • PARI
    is(k) = issquare(k) && if(k == 1, 1, my(e = factor(k)[, 2]); for(i = 1, #e, if(e[i] % 4 != 2, return(0))); 1);

Formula

a(n) = A000290(A268335(n)) = A268335(n)^2.
Sum_{n>=1} 1/a(n) = zeta(4) * Product_{p prime} (1 + 1/p^2 - 1/p^4) = 1.54211628314015874165... .
Sum_{n>=1} 1/a(n)^s = zeta(4*s) * Product_{p prime} (1 + 1/p^(2*s) - 1/p^(4*s)), for s > 1/2.

A375144 Numbers whose prime factorization has exactly two exponents that equal 2 and has no higher exponents.

Original entry on oeis.org

36, 100, 180, 196, 225, 252, 300, 396, 441, 450, 468, 484, 588, 612, 676, 684, 700, 828, 882, 980, 1044, 1089, 1100, 1116, 1156, 1225, 1260, 1300, 1332, 1444, 1452, 1476, 1521, 1548, 1575, 1692, 1700, 1900, 1908, 1980, 2028, 2100, 2116, 2124, 2156, 2178, 2196
Offset: 1

Views

Author

Amiram Eldar, Aug 01 2024

Keywords

Comments

Numbers of the form m * p^2 * q^2, where p < q are primes, and m is a squarefree number such that gcd(m, p*q) = 1.
Numbers whose powerful part (A057521) is a square of a squarefree semiprime (A085986).
The asymptotic density of this sequence is ((Sum_{p prime} 1/(p*(p+1)))^2 - Sum_{p prime} 1/(p*(p+1))^2)/(2*zeta(2)) = 0.022124574473271163980012... .

Examples

			36 = 2^2 * 3^2 is a term since its prime factorization has exactly two exponents and both are equal to 2.
		

Crossrefs

Subsequence: A179643.

Programs

  • Mathematica
    q[n_] := Module[{e = Sort[FactorInteger[n][[;; , 2]], Greater]}, Length[e] > 1 && e[[1;;2]] == {2, 2} && If[Length[e] > 2, e[[3]] == 1, True]]; Select[Range[2200], q]
  • PARI
    is(k) = {my(e = vecsort(factor(k)[,2], , 4)~); #e > 1 && e[1..2] == [2,2] && if(#e > 2, e[3] == 1, 1);}
Previous Showing 31-40 of 48 results. Next