A348957
G.f. A(x) satisfies A(x) = (1 + x * A(-x)) / (1 - x * A(x)).
Original entry on oeis.org
1, 2, 2, 10, 18, 98, 210, 1194, 2786, 16258, 39906, 236938, 601458, 3615330, 9399858, 57024426, 150947010, 922283522, 2475603138, 15212318730, 41290579410, 254909413218, 698230131858, 4327273358250, 11943274468770, 74260741616514, 206279837823650, 1286199407132554
Offset: 0
-
nmax = 27; A[] = 0; Do[A[x] = (1 + x A[-x])/(1 - x A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = -(-1)^n a[n - 1] + Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 27}]
CoefficientList[y/.AsymptoticSolve[y-y^2+x(1+y^3)==0,y->1,{x,0,27}][[1]],x] (* Alexander Burstein, Nov 26 2021 *)
A247364
Riordan array (f(x), (f(x)-1)/f(x)) where f(x) = (1 + x - sqrt(1 - 2x - 3x^2))/(2*x).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 4, 3, 1, 1, 9, 9, 6, 4, 1, 1, 21, 21, 15, 8, 5, 1, 1, 51, 51, 36, 22, 10, 6, 1, 1, 127, 127, 91, 54, 30, 12, 7, 1, 1, 323, 323, 232, 142, 75, 39, 14, 8, 1, 1, 835, 835, 603, 370, 205, 99, 49, 16, 9, 1, 1, 2188, 2188, 1585, 983
Offset: 0
Triangle begins:
1
1, 1
1, 1, 1
2, 2, 1, 1
4, 4, 3, 1, 1
9, 9, 6, 4, 1, 1
21, 21, 15, 8, 5, 1, 1
51, 51, 36, 22, 10, 6, 1, 1
Production matrix begins:
1, 1
0, 0, 1
1, 1, 0, 1
1, 1, 1, 0, 1
1, 1, 1, 1, 0, 1
1, 1, 1, 1, 1, 0, 1
1, 1, 1, 1, 1, 1, 0, 1
Original entry on oeis.org
1, 2, 14, 100, 854, 7644, 72204, 703560, 7037030, 71772844, 743844452, 7810307960, 82909630972, 888316731800, 9593823377880, 104332819539600, 1141523825614470, 12556761952114380, 138785264158902900, 1540516430396559000, 17165754516697206420, 191944345934966132040
Offset: 0
G.f.: A(x) = 1 + 1*2*x + 2*7*x^2 + 5*20*x^3 + 14*61*x^4 + 42*182*x^5 + 132*547*x^6 +...+ A000108(n)*A015518(n+1)*x^n +...
-
CoefficientList[Series[Sqrt[(1 - 4*x - Sqrt[1 - 8*x - 48*x^2])/32]/x, {x, 0, 50}], x] (* G. C. Greubel, Jun 09 2017 *)
-
{A000108(n)=binomial(2*n,n)/(n+1)}
{A015518(n)=polcoeff(x/(1-2*x-3*x^2 +x*O(x^n)),n)}
{a(n)=A000108(n)*A015518(n+1)}
for(n=0,30,print1(a(n),", "))
A333472
a(n) = [x^n] ( c (x/(1 + x)) )^n, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108.
Original entry on oeis.org
1, 1, 3, 13, 59, 276, 1317, 6371, 31131, 153292, 759428, 3780888, 18900389, 94805959, 476945913, 2405454213, 12158471195, 61574325840, 312365992620, 1587052145492, 8074474510884, 41131551386120, 209760563456920, 1070822078321520, 5471643738383781, 27982867986637151
Offset: 0
Examples of congruences:
a(11) - a(1) = 3780888 - 1 = (11^2)*31247 == 0 ( mod 11^2 ).
a(3*7) - a(3) = 41131551386120 - 13 = (7^2)*13*23671*2727841 == 0 ( mod 7^2 ).
a(5^2) - a(5) = 27982867986637151 - 276 = (5^4)*13*74687*46113049 == 0 ( mod 5^4 ).
-
Cat := x -> (1/2)*(1-sqrt(1-4*x))/x:
G := x -> Cat(x/(1+x)):
H := (x,n) -> series(G(x)^n, x, 51):
seq(coeff(H(x, n), x, n), n = 0..25);
-
Table[SeriesCoefficient[((1 + x - Sqrt[1 - 2*x - 3*x^2]) / (2*x))^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Mar 29 2020 *)
A337991
Triangle read by rows: T(n,m) = Sum_{i=1..n} C(n,i-m)*C(n+m-i,i-1)*C(n+m-i,m)/n, with T(0,0)=1.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 5, 4, 1, 4, 13, 15, 7, 1, 9, 35, 52, 36, 11, 1, 21, 96, 175, 160, 75, 16, 1, 51, 267, 576, 655, 415, 141, 22, 1, 127, 750, 1869, 2541, 2030, 952, 245, 29, 1, 323, 2123, 6000, 9492, 9156, 5488, 1988, 400, 37, 1, 835, 6046, 19107, 34476, 38976, 28476, 13356, 3852, 621, 46, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 2, 1;
2, 5, 4, 1;
4, 13, 15, 7, 1;
9, 35, 52, 36, 11, 1;
21, 96, 175, 160, 75, 16, 1;
51, 267, 576, 655, 415, 141, 22, 1;
...
-
B:=Binomial;
A337991:= func< n,k | n eq 0 select 1 else (1/n)*(&+[B(n, j-k)*B(n+k-j, j-1)*B(n+k-j, k): j in [1..n]]) >;
[A337991(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 31 2024
-
T[0, 0] = 1; T[n_, m_] := Sum[Binomial[n, i - m] * Binomial[n + m - i, i - 1] * Binomial[n + m - i, m]/n, {i, 1, n}]; Table[T[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Amiram Eldar, Oct 06 2020 *)
-
T(n,m):=if m=n then 1 else if n=0 then 0 else sum(binomial(n,i-m)*binomial(n+m-i,i-1)*binomial(n+m-i,m),i,1,n)/n;
-
def A337991(n,k):
b=binomial
if n==0: return 1
else: return (1/n)*sum(b(n, j-k)*b(n+k-j, j-1)*b(n+k-j, k) for j in range(1,n+1))
# SageMath
flatten([[A337991(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 31 2024
A348189
Pseudo-involutory Riordan companion of 1 + 2*x*M(x), where M(x) is the g.f. of A001006.
Original entry on oeis.org
1, 0, 0, 2, 0, 6, 8, 24, 60, 148, 396, 1026, 2744, 7350, 19872, 54102, 148104, 407682, 1127328, 3130542, 8726256, 24407634, 68482776, 192698124, 543642476, 1537443024, 4357677516, 12376868254, 35221087656, 100409367690, 286730523104, 820078634232, 2348966799132
Offset: 1
-
a[n_] := SeriesCoefficient[(1 - Sqrt[1-2*x-3*x^2])/(x * (2 + x - Sqrt[1-2*x-3*x^2])), {x, 0, n}]; Array[a, 33, 0] (* Amiram Eldar, Oct 06 2021 *)
-
my(x='x+O('x^35)); Vec((1-sqrt(1-2*x-3*x^2))/(x*(2+x-sqrt(1-2*x-3*x^2)))) \\ Michel Marcus, Oct 06 2021
Comments