cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 70 results. Next

A064257 Values of m such that N=(am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,41.

Original entry on oeis.org

306, 7686, 9900, 24168, 32778, 68448, 86160, 107070, 112236, 148398, 172998, 207930, 217770, 221706, 231546, 250488, 277548, 292800, 303378, 306576, 329208, 354300, 380130, 398580, 488616, 490338, 492798, 501408, 533388, 559218, 567828, 605220, 619980, 640890
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

am+1, bm+1, cm+1 are primes and am | (N-1), bm | (N-1), cm |(N-1).

References

  • Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

Crossrefs

Cf. A087788.

Programs

  • Mathematica
    carmQ[n_] := CompositeQ[n] && Divisible[n - 1, CarmichaelLambda[n]]; Select[Range[10^5], AllTrue[(v = {1, 2, 41}*# + 1), PrimeQ] && carmQ[Times @@ v] &] (* Amiram Eldar, Oct 17 2019 *)

Extensions

Offset corrected and more terms added by Amiram Eldar, Oct 17 2019

A064258 Values of m such that N=(am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,43.

Original entry on oeis.org

966, 12576, 36570, 37860, 71916, 78366, 103650, 126096, 132546, 242970, 279606, 316500, 387966, 392610, 404220, 407316, 418926, 459690, 498390, 500196, 523416, 524706, 554376, 604170, 707886, 729300, 749940, 755616, 769806, 840756, 897516, 903450, 974400, 1048446
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

am+1, bm+1, cm+1 are primes and am | (N-1), bm | (N-1), cm |(N-1).

References

  • Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

Crossrefs

Cf. A087788.

Programs

  • Mathematica
    carmQ[n_] := CompositeQ[n] && Divisible[n - 1, CarmichaelLambda[n]]; Select[Range[10^5], AllTrue[(v = {1, 2, 43}*# + 1), PrimeQ] && carmQ[Times @@ v] &] (* Amiram Eldar, Oct 17 2019 *)

Extensions

Offset corrected and more terms added by Amiram Eldar, Oct 17 2019

A064259 Values of m such that N=(am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,45.

Original entry on oeis.org

336, 606, 1236, 3036, 7536, 9066, 12576, 17256, 18786, 19416, 22026, 27966, 28596, 30576, 33636, 35616, 43986, 47136, 48486, 49476, 52806, 53526, 59106, 60726, 63246, 71706, 80526, 83136, 86286, 89976, 96096, 97986, 98886, 103836, 105096, 116256, 118686, 119046
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

am+1, bm+1, cm+1 are primes and am | (N-1), bm | (N-1), cm |(N-1).

References

  • Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

Crossrefs

Cf. A087788.

Programs

  • Mathematica
    carmQ[n_] := CompositeQ[n] && Divisible[n - 1, CarmichaelLambda[n]]; Select[Range[10^5], AllTrue[(v = {1, 2, 45}*# + 1), PrimeQ] && carmQ[Times @@ v] &] (* Amiram Eldar, Oct 17 2019 *)

Extensions

Offset corrected and more terms added by Amiram Eldar, Oct 17 2019

A064260 Values of m such that N=(am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,47.

Original entry on oeis.org

210, 2466, 4158, 5850, 14028, 116958, 156156, 166026, 176178, 188868, 208608, 225528, 232860, 241320, 252036, 284748, 290106, 290670, 345378, 350736, 399240, 439566, 444078, 448308, 450000, 498786, 582540, 669678, 708030, 722976, 746100, 809268, 813216, 860028
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

am+1, bm+1, cm+1 are primes and am | (N-1), bm | (N-1), cm |(N-1).

References

  • Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

Crossrefs

Cf. A087788.

Programs

  • Mathematica
    carmQ[n_] := CompositeQ[n] && Divisible[n - 1, CarmichaelLambda[n]]; Select[Range[10^5], AllTrue[(v = {1, 2, 47}*# + 1), PrimeQ] && carmQ[Times @@ v] &] (* Amiram Eldar, Oct 17 2019 *)

Extensions

Offset corrected and more terms added by Amiram Eldar, Oct 17 2019

A064261 Values of m such that N=(am+1)(bm+1)(cm+1) is a 3-Carmichael number (A087788), where a,b,c = 1,2,49.

Original entry on oeis.org

660, 2718, 12420, 57990, 82980, 89448, 127080, 142368, 174120, 184998, 202638, 216750, 229980, 233508, 234978, 280548, 297600, 329940, 331998, 341700, 384918, 406380, 412848, 421080, 433428, 455478, 503988, 505458, 533388, 578370, 608358, 675978, 768588, 779760
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2001

Keywords

Comments

am+1, bm+1, cm+1 are primes and am | (N-1), bm | (N-1), cm |(N-1).

References

  • Harvey Dubner (harvey(AT)dubner.com), personal communication, Jun 27 2001.

Crossrefs

Cf. A087788.

Programs

  • Mathematica
    carmQ[n_] := CompositeQ[n] && Divisible[n - 1, CarmichaelLambda[n]]; Select[Range[10^5], AllTrue[(v = {1, 2, 49}*# + 1), PrimeQ] && carmQ[Times @@ v] &] (* Amiram Eldar, Oct 17 2019 *)

Extensions

Offset corrected and more terms added by Amiram Eldar, Oct 17 2019

A328937 The number of imprimitive 3-Carmichael numbers (A087788 and A328935) below 10^n.

Original entry on oeis.org

4, 11, 25, 59, 127, 252, 471, 928, 1734, 3462, 6615, 12725, 24396, 46877, 89854, 173331, 334737, 647265, 1253176
Offset: 6

Views

Author

Amiram Eldar, Oct 31 2019

Keywords

Comments

Granville and Pomerance conjectured that most Carmichael numbers are imprimitive, i.e. lim_{n->oo} a(n)/A132195(n) = 1.

Examples

			a(6) = 4 since there are 4 imprimitive 3-Carmichael numbers below 10^6: 294409, 399001, 488881, 512461.
		

Crossrefs

A006931 Least Carmichael number with n prime factors, or 0 if no such number exists.

Original entry on oeis.org

561, 41041, 825265, 321197185, 5394826801, 232250619601, 9746347772161, 1436697831295441, 60977817398996785, 7156857700403137441, 1791562810662585767521, 87674969936234821377601, 6553130926752006031481761, 1590231231043178376951698401
Offset: 3

Views

Author

Keywords

Comments

Alford, Grantham, Hayman, & Shallue construct large Carmichael numbers, finding upper bounds for a(3)-a(19565220) and a(10333229505). - Charles R Greathouse IV, May 30 2013

References

  • J.-P. Delahaye, Merveilleux nombres premiers ("Amazing primes"), p. 269, Pour la Science, Paris 2000.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    (* Program not suitable to compute more than a few terms *)
    A2997 = Select[Range[1, 10^6, 2], CompositeQ[#] && Mod[#, CarmichaelLambda[#] ] == 1&];
    (First /@ Split[Sort[{PrimeOmega[#], #}& /@ A2997], #1[[1]] == #2[[1]]&])[[All, 2]] (* Jean-François Alcover, Sep 11 2018 *)
  • PARI
    Korselt(n,f=factor(n))=for(i=1,#f[,1],if(f[i,2]>1||(n-1)%(f[i,1]-1),return(0)));1
    a(n)=my(p=2,f);forprime(q=3,default(primelimit),forstep(k=p+2,q-2,2,f=factor(k);if(vecmax(f[,2])==1 && #f[,2]==n && Korselt(k,f), return(k)));p=q)
    \\ Charles R Greathouse IV, Apr 25 2012
    
  • PARI
    carmichael(A, B, k) = A=max(A, vecprod(primes(k+1))\2); (f(m, l, lo, k) = my(list=List()); my(hi=sqrtnint(B\m, k)); if(lo > hi, return(list)); if(k==1, lo=max(lo, ceil(A/m)); my(t=lift(1/Mod(m,l))); while(t < lo, t += l); forstep(p=t, hi, l, if(isprime(p), my(n=m*p); if((n-1)%(p-1) == 0, listput(list, n)))), forprime(p=lo, hi, if(gcd(m, p-1) == 1, list=concat(list, f(m*p, lcm(l, p-1), p+1, k-1))))); list); vecsort(Vec(f(1, 1, 3, k)));
    a(n) = if(n < 3, return()); my(x=vecprod(primes(n+1))\2,y=2*x); while(1, my(v=carmichael(x,y,n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Feb 24 2023

Extensions

Corrected by Lekraj Beedassy, Dec 31 2002
More terms from Ralf Stephan, from the Pinch paper, Apr 16 2005
Edited by N. J. A. Sloane, May 16 2008 at the suggestion of R. J. Mathar.
Escape clause added by Jianing Song, Dec 12 2021

A033502 Carmichael numbers of the form (6*k+1)*(12*k+1)*(18*k+1), where 6*k+1, 12*k+1 and 18*k+1 are all primes.

Original entry on oeis.org

1729, 294409, 56052361, 118901521, 172947529, 216821881, 228842209, 1299963601, 2301745249, 9624742921, 11346205609, 13079177569, 21515221081, 27278026129, 65700513721, 71171308081, 100264053529, 168003672409, 172018713961, 173032371289, 464052305161
Offset: 1

Views

Author

Keywords

Comments

Also called Chernick's Carmichael numbers. The polynomial (6*k+1)*(12*k+1)*(18*k+1) is the simplest Chernick polynomial. [Named after the American physicist and mathematician Jack Chernick (1911-1971). - Amiram Eldar, Jun 15 2021]
The first term, 1729, is the Hardy-Ramanujan number and the smallest primary Carmichael number (A324316).
Dickson's conjecture implies that this sequence is infinite, as pointed out by Chernick.
All terms of this sequence are primary Carmichael numbers (A324316) having the following remarkable property. Let m be a term of A033502. For each prime divisor p of m, the sum of the base-p digits of m equals p. This property also holds for "almost all" 3-term Carmichael numbers (A087788), since they can be represented by certain Chernick polynomials, whose values obey a strict s-decomposition (A324460) besides certain exceptions, see Kellner 2019. - Bernd C. Kellner, Aug 03 2022

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section A13, pp. 50-53.

Crossrefs

Values of k are given by A046025. Subsequence of A002997, A087788, and A324316.

Programs

  • Magma
    [n : k in [1..710] | IsPrime(a) and IsPrime(b) and IsPrime(c) and IsOne(n mod CarmichaelLambda(n)) where n is a*b*c where a is 6*k+1 where b is 12*k+1 where c is 18*k+1]; // Arkadiusz Wesolowski, Oct 29 2013
  • Mathematica
    CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; (6# + 1)(12# + 1)(18# + 1) & /@
    Select[ Range@ 1000, PrimeQ[6# + 1] && PrimeQ[12# + 1] && PrimeQ[18# + 1] && CarmichaelNbrQ[(6# + 1)(12# + 1)(18# + 1)] &]

Extensions

Definition corrected (thanks to Umberto Cerruti) by Bruno Berselli, Jan 18 2013

A112428 Carmichael numbers equal to the product of 5 primes.

Original entry on oeis.org

825265, 1050985, 9890881, 10877581, 12945745, 13992265, 16778881, 18162001, 27336673, 28787185, 31146661, 36121345, 37167361, 40280065, 41298985, 41341321, 41471521, 47006785, 67371265, 67994641, 69331969, 74165065
Offset: 1

Views

Author

Shyam Sunder Gupta, Dec 11 2005

Keywords

Comments

A subsequence is given by (6n+1)*(12n+1)*(18n+1)*(36n+1)*(72n+1) with n in A206349. - M. F. Hasler, Apr 14 2015

Examples

			a(1)=825265=5*7*17*19*73
		

Crossrefs

Programs

Formula

A112428 = A002997 intersect A014614. - M. F. Hasler, Apr 14 2015

Extensions

Crossrefs added by M. F. Hasler, Apr 14 2015

A083876 Least pseudoprime to base 2 through base prime(n).

Original entry on oeis.org

341, 1105, 1729, 29341, 29341, 162401, 252601, 252601, 252601, 252601, 252601, 252601, 1152271, 2508013, 2508013, 3828001, 3828001, 3828001, 3828001, 3828001, 3828001, 3828001, 3828001, 3828001, 3828001, 6733693, 6733693, 6733693
Offset: 1

Views

Author

Robert G. Wilson v, May 06 2003

Keywords

Comments

Records: 341, 1105, 1729, 29341, 162401, 252601, 1152271, 2508013, 3828001, 6733693, 17098369, 17236801, 29111881, 82929001, 172947529, 216821881, 228842209, 366652201, .... - Robert G. Wilson v, May 11 2012
Conjecture: for n > 1, a(n) is the smallest Carmichael number k with lpf(k) > prime(n). It seems that such Carmichael numbers have exactly three prime factors. - Thomas Ordowski, Apr 18 2017
The conjecture is true if a(n) < A285549(n) for all n > 1. It holds for all a(n) < 2^64. - Max Alekseyev and Thomas Ordowski, Mar 13 2018
If prime(n) < m < a(n), then m is prime if and only if p^(m-1) == 1 (mod m) for every prime p <= prime(n). - Thomas Ordowski, Mar 05 2018
By this conjecture in the second comment, a(n) <= A135720(n+1), with equality for n > 1 iff a(n) < a(n+1), namely for n = 2, 3, 5, 6, 12, 13, 15, 25, 28, 29, ... For such n, a(n) gives all terms of A300629 > 561. - Thomas Ordowski, Mar 10 2018

Crossrefs

Programs

  • Mathematica
    k = 4; Do[l = Table[ Prime[i], {i, 1, n}]; While[ PrimeQ[k] || Union[PowerMod[l, k - 1, k]] != {1}, k++ ]; Print[k], {n, 1, 29}]
  • PARI
    isps(k, n) = {if (isprime(k), return (0)); my(nbok = 0); for (b=2, prime(n), if (Mod(b, k)^(k-1) == 1, nbok++, break)); if (nbok==prime(n)-1, return (1));}
    a(n) = {my(k=2); while (!isps(k, n), k++); return (k);} \\ Michel Marcus, Apr 27 2018
Previous Showing 31-40 of 70 results. Next