cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A133811 Numbers that are primally tight and have strictly ascending powers.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 18, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 54, 59, 61, 64, 67, 71, 73, 75, 79, 81, 83, 89, 97, 101, 103, 107, 108, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 162, 163, 167, 169, 173, 179, 181, 191
Offset: 1

Views

Author

Olivier Gérard, Sep 23 2007

Keywords

Comments

All numbers of the form p_1^k1*p_2^k2*...*p_n^k_n, where k1 < k2 < ... < k_n and the p_i are n successive primes.
Subset of A073491, A133810.
Different from A082377 starting n=16.
Different from A000961 (prime powers) starting n=13.

Crossrefs

Programs

  • Haskell
    a133811 n = a133811_list !! (n-1)
    a133811_list = 1 : filter f [2..] where
       f x = (and $ zipWith (<) eps $ tail eps) &&
             (all (== 1) $ zipWith (-) (tail ips) ips)
         where ips = map a049084 $ a027748_row x
               eps = a124010_row x
    -- Reinhard Zumkeller, Nov 07 2012
    
  • PARI
    isok(n) = {my(f = factor(n)); my(nbf = #f~); my(lastp = 0); for (i=1, nbf, if (lastp && (f[i, 1] != nextprime(lastp+1)), return (0)); lastp = f[i, 1];); for (j=2, nbf, if (f[j,2] <= f[j-1,2], return (0));); return (1);} \\ Michel Marcus, Jun 04 2014

A363063 Positive integers k such that the largest power of p dividing k is larger than or equal to the largest power of q dividing k (i.e., A305720(k,p) >= A305720(k,q)) for all primes p and q with p < q.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 96, 128, 144, 192, 256, 288, 384, 512, 576, 720, 768, 864, 1024, 1152, 1440, 1536, 1728, 2048, 2304, 2880, 3072, 3456, 4096, 4320, 4608, 5760, 6144, 6912, 8192, 8640, 9216, 10368, 11520, 12288, 13824, 16384, 17280, 18432
Offset: 1

Views

Author

Pontus von Brömssen, May 16 2023

Keywords

Comments

Includes all products of terms in A347284, but there are also other terms such as 4320.
Closed under multiplication. - Peter Munn, May 21 2023

Examples

			151200 = 2^5 * 3^3 * 5^2 * 7 is a term, because 2^5 >= 3^3 >= 5^2 >= 7.
72 = 2^3 * 3^2 is not a term, because 2^3 < 3^2.
40 = 2^3 * 3^0 * 5 is not a term, because 3^0 < 5.
From _Michael De Vlieger_, May 19 2023: (Start)
Sequence read as an irregular triangle delimited by appearance of 2^m:
     1
     2
     4
     8     12
    16     24
    32     48
    64     96
   128    144    192
   256    288    384
   512    576    720    768    864
  1024   1152   1440   1536   1728
  2048   2304   2880   3072   3456
  4096   4320   4608   5760   6144   6912
  8192   8640   9216  10368  11520  12288  13824
  ... (End)
		

Crossrefs

Cf. A181818, A305720, A347284, A363098 (primitive terms).
Subsequence of: A087980, {1} U A363122.

Programs

  • Mathematica
    Select[Range[20000], # == 1 || PrimePi[(f = FactorInteger[#])[[-1, 1]]] == Length[f] && Greater @@ (Power @@@ f) &] (* Amiram Eldar, May 16 2023 *)
  • Python
    from sympy import nextprime
    primes = [2] # global list of first primes
    def f(kmax,pi,ppmax):
        # Generate numbers up to kmax with nonincreasing prime-powers <= ppmax, starting at the (pi+1)-st prime.
        if len(primes) <= pi: primes.append(nextprime(primes[-1]))
        p0 = primes[pi]
        ppmax = min(ppmax,kmax)
        if ppmax < p0:
            yield 1
            return
        pp = 1
        while pp <= ppmax:
            for x in f(kmax//pp,pi+1,pp):
                yield pp*x
            pp *= p0
    def A363063_list(kmax):
        return sorted(f(kmax,0,kmax))

A133810 Numbers that are primally tight and have weakly ascending powers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 23, 25, 27, 29, 30, 31, 32, 35, 36, 37, 41, 43, 47, 49, 53, 54, 59, 61, 64, 67, 71, 73, 75, 77, 79, 81, 83, 89, 97, 101, 103, 105, 107, 108, 109, 113, 121, 125, 127, 128, 131, 137, 139, 143, 149, 150, 151, 157, 162
Offset: 1

Views

Author

Olivier Gérard, Sep 23 2007

Keywords

Comments

All numbers of the form p_1^k1*p_2^k2*...*p_n^k_n, where k1 <= k2 <= ... <= k_n and the p_i are n successive primes.

Crossrefs

Programs

  • Haskell
    a133810 n = a133810_list !! (n-1)
    a133810_list = 1 : filter f [2..] where
       f x = (and $ zipWith (<=) eps $ tail eps) &&
             (all (== 1) $ zipWith (-) (tail ips) ips)
         where ips = map a049084 $ a027748_row x
               eps = a124010_row x
    -- Reinhard Zumkeller, Nov 07 2012

A328524 T(n,k) is the k-th smallest least integer of prime signatures for partitions of n into distinct parts; triangle T(n,k), n>=0, 1<=k<=A000009(n), read by rows.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 48, 72, 64, 96, 144, 360, 128, 192, 288, 432, 720, 256, 384, 576, 864, 1440, 2160, 512, 768, 1152, 1728, 2592, 2880, 4320, 10800, 1024, 1536, 2304, 3456, 5184, 5760, 8640, 12960, 21600, 75600, 2048, 3072, 4608, 6912, 10368, 11520
Offset: 0

Views

Author

Alois P. Heinz, Feb 18 2020

Keywords

Examples

			Triangle T(n,k) begins:
     1;
     2;
     4;
     8,   12;
    16,   24;
    32,   48,   72;
    64,   96,  144,  360;
   128,  192,  288,  432,  720;
   256,  384,  576,  864, 1440, 2160;
   512,  768, 1152, 1728, 2592, 2880, 4320, 10800;
  1024, 1536, 2304, 3456, 5184, 5760, 8640, 12960, 21600, 75600;
  ...
		

Crossrefs

Column k=1-3 give: A000079, A003945 for n>2, A116453 for n>4.
Row sums give A332626.
Last elements of rows give A332644.
Cf. A000009, A087443 (for all partitions), A087980 (as sorted sequence).

Programs

  • Maple
    b:= proc(n, i, j) option remember; `if`(i*(i+1)/2 x*ithprime(j)^i,
           b(n-i, min(n-i, i-1), j+1))[], b(n, i-1, j)[]]))
        end:
    T:= n-> sort(b(n$2, 1))[]:
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, i_, j_] := b[n, i, j] = If[i(i+1)/2 < n, {}, If[n == 0, {1}, Join[# * Prime[j]^i& /@ b[n - i, Min[n - i, i - 1], j + 1], b[n, i - 1, j]]]];
    T[n_] := Sort[b[n, n, 1]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 07 2020, after Maple *)

A133809 Numbers that are primally tight, have 2 as first prime and strictly ascending powers.

Original entry on oeis.org

1, 2, 4, 8, 16, 18, 32, 54, 64, 108, 128, 162, 256, 324, 486, 512, 648, 972, 1024, 1458, 1944, 2048, 2250, 2916, 3888, 4096, 4374, 5832, 8192, 8748, 11250, 11664, 13122, 16384, 17496, 23328, 26244, 32768, 33750, 34992, 39366, 52488, 56250, 65536
Offset: 1

Views

Author

Olivier Gérard, Sep 23 2007

Keywords

Comments

All numbers of the form 2^k1*p_2^k2*...*p_n^k_n, where k1 < k2 < ... < k_n and the p_i are the n first primes.
Subset of A073491, A133811 and A133808.

Examples

			36 = 2^2*3^2 with both exponents being equal is not in the sequence.
		

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a133809 n = a133809_list !! (n-1)
    a133809_list = 1 : f (singleton (2, 2, 1)) where
       f s = y : f (insert (y*p, p, e+1) $ insert (y*q^(e+1), q, e+1) s')
                 where q = a151800 p
                       ((y, p, e), s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 14 2015
  • PARI
    isok(n) = {my(f = factor(n)); my(nbf = #f~); if (prod(i=1, nbf, prime(i)) ! = prod(i=1, nbf, f[i, 1]), return (0)); for (j=2, nbf, if (f[j,2] <= f[j-1,2], return (0));); return (1);} \\ Michel Marcus, Jun 04 2014
    

A133812 Numbers that are primally tight and have weakly descending powers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 23, 24, 25, 27, 29, 30, 31, 32, 35, 36, 37, 41, 43, 45, 47, 48, 49, 53, 59, 60, 61, 64, 67, 71, 72, 73, 77, 79, 81, 83, 89, 96, 97, 101, 103, 105, 107, 109, 113, 120, 121, 125, 127, 128, 131, 135, 137, 139, 143, 144
Offset: 1

Views

Author

Olivier Gérard, Sep 23 2007

Keywords

Comments

All numbers of the form p_1^k1*p_2^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n and the p_i are n successive primes.
Differs from A073491 starting n=16.

Crossrefs

Programs

  • Mathematica
    aQ[n_] := Module[{f=FactorInteger[n]}, p=f[[;;,1]]; e=f[[;;,2]]; PrimePi[p[[-1]]]-PrimePi[p[[1]]] == Length[p]-1 && AllTrue[Differences[e], #<=0 &]]; Join[{1}, Select[Range[2, 144], aQ]] (* Amiram Eldar, Jun 20 2019 *)

Extensions

Cross-references from Charles R Greathouse IV, Dec 04 2009

A362227 a(n) = Product_{k=1..w(n)} p(k)^(S(n,k)-1), where set S(n,k) = row n of A272011 and w(n) = A000120(n) is the binary weight of n.

Original entry on oeis.org

1, 2, 4, 12, 8, 24, 72, 360, 16, 48, 144, 720, 432, 2160, 10800, 75600, 32, 96, 288, 1440, 864, 4320, 21600, 151200, 2592, 12960, 64800, 453600, 324000, 2268000, 15876000, 174636000, 64, 192, 576, 2880, 1728, 8640, 43200, 302400, 5184, 25920, 129600, 907200, 648000, 4536000, 31752000, 349272000, 15552
Offset: 0

Views

Author

Michael De Vlieger, Jun 08 2023

Keywords

Comments

In other words, let S(n) contain place values of 1's in the binary expansion of n, ordered greatest to least, where S(n,1) = floor(log_2(n+1)) = A000523(n+1) and the remaining terms in S strictly decrease. This sequence reads S(n,k)+1 instead as a multiplicity of prime(k) so as to produce a number with strictly decreasing prime exponents.

Examples

			a(0) = 1 since 1 is the empty product.
a(1) = 2 since 1 = 2^0, s = {0}, hence a(1) = prime(1)^(0+1) = 2^1 = 2.
a(2) = 4 since 2 = 2^1, s = {1}, hence a(2) = 2^(1+1) = 4.
a(3) = 12 since 3 = 2^1+2^0, s = {1,0}, hence a(3) = 2^2*3^1 = 12, etc.
The table below relates first terms of this sequence greater than 1 to A272011 and A067255:
   n   A272011(n)  a(n)  A067255(a(n))
  ------------------------------------
   1   0             2   1
   2   1             4   2
   3   1,0          12   2,1
   4   2             8   3
   5   2,0          24   3,1
   6   2,1          72   3,2
   7   2,1,0       360   3,2,1
   8   3            16   4
   9   3,0          48   4,1
  10   3,1         144   4,2
  11   3,1,0       720   4,2,1
  12   3,2         432   4,3
  13   3,2,0      2160   4,3,1
  14   3,2,1     10800   4,3,2
  15   3,2,1,0   75600   4,3,2,1
  16   4            32   5
  ...
This sequence appears below, seen as an irregular triangle T(m,j) delimited by 2^m where j = 1..2^(m-1) for m > 0:
   1;
   2;
   4, 12;
   8, 24,  72, 360;
  16, 48, 144, 720, 432, 2160, 10800, 75600;
  ...
T(m,1) = 2^m.
T(m,2^(m-1)) = A006939(m) for m > 0.
		

Crossrefs

Programs

  • Mathematica
    Array[Times @@ MapIndexed[Prime[First[#2]]^(#1 + 1) &, Length[#] - Position[#, 1][[All, 1]] ] &[IntegerDigits[#, 2]] &, 48, 0]

Formula

This sequence, sorted, is A087980.
a(2^k) = 2^(k+1).
a(2^k-1) = A006939(k-1).

A145108 Multiples of 4 that are primally tight and have strictly ascending powers.

Original entry on oeis.org

4, 8, 16, 32, 64, 108, 128, 256, 324, 512, 648, 972, 1024, 1944, 2048, 2916, 3888, 4096, 5832, 8192, 8748, 11664, 16384, 17496, 23328, 26244, 32768, 34992, 52488, 65536, 67500, 69984, 78732, 104976, 131072, 139968, 157464, 209952, 236196, 262144
Offset: 1

Views

Author

Reikku Kulon, Oct 02 2008

Keywords

Comments

All numbers of the form 2^k0*p_1^k1*p_2^k2*...*p_n^k_n, where 2 <= k0 < k1 < k2 < ... < k_n and the p_i are n successive primes.

Crossrefs

Programs

  • Haskell
    a145108 n = a145108_list !! (n-1)
    a145108_list = filter ((== 0) . (`mod` 4)) a133809_list
    -- Reinhard Zumkeller, Apr 14 2015

A161812 Numbers with decreasing but not strictly decreasing prime signature.

Original entry on oeis.org

6, 30, 36, 60, 120, 180, 210, 216, 240, 420, 480, 840, 900, 960, 1080, 1260, 1296, 1680, 1800, 1920, 2310, 2520, 3360, 3600, 3840, 4620, 5040, 5400, 6300, 6480, 6720, 7200, 7560, 7680, 7776, 9240, 10080, 12600, 13440, 13860, 14400, 15120, 15360, 18480
Offset: 1

Views

Author

Peter Luschny, Jun 20 2009

Keywords

Comments

All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, and the '=' occurs at least once, sorted.
It appears that all highly composite numbers (A002182) greater than 720 are in this sequence. - Walter Roscello, Dec 24 2013

Examples

			a(1) = 2*3, a(2) = 2*3*5, a(3) = 2^2*3^2, a(4) = 2^2*3*5.
		

Crossrefs

Programs

  • Mathematica
    okQ[n_] := Module[{pp, ee}, {pp, ee} = Transpose[FactorInteger[n]]; Length[pp] == PrimePi[pp // Last] && GreaterEqual @@ ee && Sort[ee] != Union[ee]]; Select[Range[20000], okQ] (* Jean-François Alcover, Jun 17 2019 *)

Extensions

Terms up to n=279 added by Walter Roscello, Dec 24 2013

A332644 Largest of the least integers of prime signatures over all partitions of n into distinct parts.

Original entry on oeis.org

1, 2, 4, 12, 24, 72, 360, 720, 2160, 10800, 75600, 151200, 453600, 2268000, 15876000, 174636000, 349272000, 1047816000, 5239080000, 36673560000, 403409160000, 5244319080000, 10488638160000, 31465914480000, 157329572400000, 1101307006800000, 12114377074800000
Offset: 0

Views

Author

Alois P. Heinz, Feb 18 2020

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, j) option remember;
          `if`(i*(i+1)/2 b(n$2, 1):
    seq(a(n), n=0..30);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, a(n-1)*
          ithprime(n-(t-> t*(t+1)/2)(floor((sqrt(8*n-7)-1)/2))))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_, j_] := b[n, i, j] = If[i(i+1)/2 < n, 0, If[n == 0, 1, Max[b[n, i - 1, j], Prime[j]^i b[n - i, Min[n - i, i - 1], j + 1]]]];
    a[n_] := b[n, n, 1];
    a /@ Range[0, 30] (* Jean-François Alcover, May 07 2020, after 1st Maple program *)

Formula

a(n) = A328524(n,A000009(n)).
A001221(a(n)) = A003056(n).
A001222(a(n)) = n.
A046523(a(n)) = a(n).
a(n)/a(n-1) = A037126(n) = A000040(n-A000217(A003056(n))) for n > 0.
a(n) in { A025487 }.
a(n) in { A055932 }.
a(n) in { A087980 }.
A007814(a(n)) = A123578(n).
Previous Showing 11-20 of 23 results. Next