A133811
Numbers that are primally tight and have strictly ascending powers.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 18, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 54, 59, 61, 64, 67, 71, 73, 75, 79, 81, 83, 89, 97, 101, 103, 107, 108, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 162, 163, 167, 169, 173, 179, 181, 191
Offset: 1
-
a133811 n = a133811_list !! (n-1)
a133811_list = 1 : filter f [2..] where
f x = (and $ zipWith (<) eps $ tail eps) &&
(all (== 1) $ zipWith (-) (tail ips) ips)
where ips = map a049084 $ a027748_row x
eps = a124010_row x
-- Reinhard Zumkeller, Nov 07 2012
-
isok(n) = {my(f = factor(n)); my(nbf = #f~); my(lastp = 0); for (i=1, nbf, if (lastp && (f[i, 1] != nextprime(lastp+1)), return (0)); lastp = f[i, 1];); for (j=2, nbf, if (f[j,2] <= f[j-1,2], return (0));); return (1);} \\ Michel Marcus, Jun 04 2014
A363063
Positive integers k such that the largest power of p dividing k is larger than or equal to the largest power of q dividing k (i.e., A305720(k,p) >= A305720(k,q)) for all primes p and q with p < q.
Original entry on oeis.org
1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 96, 128, 144, 192, 256, 288, 384, 512, 576, 720, 768, 864, 1024, 1152, 1440, 1536, 1728, 2048, 2304, 2880, 3072, 3456, 4096, 4320, 4608, 5760, 6144, 6912, 8192, 8640, 9216, 10368, 11520, 12288, 13824, 16384, 17280, 18432
Offset: 1
151200 = 2^5 * 3^3 * 5^2 * 7 is a term, because 2^5 >= 3^3 >= 5^2 >= 7.
72 = 2^3 * 3^2 is not a term, because 2^3 < 3^2.
40 = 2^3 * 3^0 * 5 is not a term, because 3^0 < 5.
From _Michael De Vlieger_, May 19 2023: (Start)
Sequence read as an irregular triangle delimited by appearance of 2^m:
1
2
4
8 12
16 24
32 48
64 96
128 144 192
256 288 384
512 576 720 768 864
1024 1152 1440 1536 1728
2048 2304 2880 3072 3456
4096 4320 4608 5760 6144 6912
8192 8640 9216 10368 11520 12288 13824
... (End)
- Pontus von Brömssen, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Plot p^e | a(n) at (x,y) = (n, pi(p)), n = 1..1024, showing multiplicity e with a color function such that e = 1 is black, e = 2 is red, e = 3 is orange, etc., 12X vertical exaggeration. On the bottom, a color code represents a(n) is empty product (black), prime (red), composite prime power (gold), neither squarefree nor prime power (blue).
- Michael De Vlieger, Plot multiplicities e in a(n) = Product p^e at (x,y) = (e, -n) for n = 1..1024, 8X horizontal exaggeration.
-
Select[Range[20000], # == 1 || PrimePi[(f = FactorInteger[#])[[-1, 1]]] == Length[f] && Greater @@ (Power @@@ f) &] (* Amiram Eldar, May 16 2023 *)
-
from sympy import nextprime
primes = [2] # global list of first primes
def f(kmax,pi,ppmax):
# Generate numbers up to kmax with nonincreasing prime-powers <= ppmax, starting at the (pi+1)-st prime.
if len(primes) <= pi: primes.append(nextprime(primes[-1]))
p0 = primes[pi]
ppmax = min(ppmax,kmax)
if ppmax < p0:
yield 1
return
pp = 1
while pp <= ppmax:
for x in f(kmax//pp,pi+1,pp):
yield pp*x
pp *= p0
def A363063_list(kmax):
return sorted(f(kmax,0,kmax))
A133810
Numbers that are primally tight and have weakly ascending powers.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 23, 25, 27, 29, 30, 31, 32, 35, 36, 37, 41, 43, 47, 49, 53, 54, 59, 61, 64, 67, 71, 73, 75, 77, 79, 81, 83, 89, 97, 101, 103, 105, 107, 108, 109, 113, 121, 125, 127, 128, 131, 137, 139, 143, 149, 150, 151, 157, 162
Offset: 1
A328524
T(n,k) is the k-th smallest least integer of prime signatures for partitions of n into distinct parts; triangle T(n,k), n>=0, 1<=k<=A000009(n), read by rows.
Original entry on oeis.org
1, 2, 4, 8, 12, 16, 24, 32, 48, 72, 64, 96, 144, 360, 128, 192, 288, 432, 720, 256, 384, 576, 864, 1440, 2160, 512, 768, 1152, 1728, 2592, 2880, 4320, 10800, 1024, 1536, 2304, 3456, 5184, 5760, 8640, 12960, 21600, 75600, 2048, 3072, 4608, 6912, 10368, 11520
Offset: 0
Triangle T(n,k) begins:
1;
2;
4;
8, 12;
16, 24;
32, 48, 72;
64, 96, 144, 360;
128, 192, 288, 432, 720;
256, 384, 576, 864, 1440, 2160;
512, 768, 1152, 1728, 2592, 2880, 4320, 10800;
1024, 1536, 2304, 3456, 5184, 5760, 8640, 12960, 21600, 75600;
...
Last elements of rows give
A332644.
-
b:= proc(n, i, j) option remember; `if`(i*(i+1)/2 x*ithprime(j)^i,
b(n-i, min(n-i, i-1), j+1))[], b(n, i-1, j)[]]))
end:
T:= n-> sort(b(n$2, 1))[]:
seq(T(n), n=0..12);
-
b[n_, i_, j_] := b[n, i, j] = If[i(i+1)/2 < n, {}, If[n == 0, {1}, Join[# * Prime[j]^i& /@ b[n - i, Min[n - i, i - 1], j + 1], b[n, i - 1, j]]]];
T[n_] := Sort[b[n, n, 1]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 07 2020, after Maple *)
A133809
Numbers that are primally tight, have 2 as first prime and strictly ascending powers.
Original entry on oeis.org
1, 2, 4, 8, 16, 18, 32, 54, 64, 108, 128, 162, 256, 324, 486, 512, 648, 972, 1024, 1458, 1944, 2048, 2250, 2916, 3888, 4096, 4374, 5832, 8192, 8748, 11250, 11664, 13122, 16384, 17496, 23328, 26244, 32768, 33750, 34992, 39366, 52488, 56250, 65536
Offset: 1
36 = 2^2*3^2 with both exponents being equal is not in the sequence.
-
import Data.Set (singleton, deleteFindMin, insert)
a133809 n = a133809_list !! (n-1)
a133809_list = 1 : f (singleton (2, 2, 1)) where
f s = y : f (insert (y*p, p, e+1) $ insert (y*q^(e+1), q, e+1) s')
where q = a151800 p
((y, p, e), s') = deleteFindMin s
-- Reinhard Zumkeller, Apr 14 2015
-
isok(n) = {my(f = factor(n)); my(nbf = #f~); if (prod(i=1, nbf, prime(i)) ! = prod(i=1, nbf, f[i, 1]), return (0)); for (j=2, nbf, if (f[j,2] <= f[j-1,2], return (0));); return (1);} \\ Michel Marcus, Jun 04 2014
A133812
Numbers that are primally tight and have weakly descending powers.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 23, 24, 25, 27, 29, 30, 31, 32, 35, 36, 37, 41, 43, 45, 47, 48, 49, 53, 59, 60, 61, 64, 67, 71, 72, 73, 77, 79, 81, 83, 89, 96, 97, 101, 103, 105, 107, 109, 113, 120, 121, 125, 127, 128, 131, 135, 137, 139, 143, 144
Offset: 1
-
aQ[n_] := Module[{f=FactorInteger[n]}, p=f[[;;,1]]; e=f[[;;,2]]; PrimePi[p[[-1]]]-PrimePi[p[[1]]] == Length[p]-1 && AllTrue[Differences[e], #<=0 &]]; Join[{1}, Select[Range[2, 144], aQ]] (* Amiram Eldar, Jun 20 2019 *)
A362227
a(n) = Product_{k=1..w(n)} p(k)^(S(n,k)-1), where set S(n,k) = row n of A272011 and w(n) = A000120(n) is the binary weight of n.
Original entry on oeis.org
1, 2, 4, 12, 8, 24, 72, 360, 16, 48, 144, 720, 432, 2160, 10800, 75600, 32, 96, 288, 1440, 864, 4320, 21600, 151200, 2592, 12960, 64800, 453600, 324000, 2268000, 15876000, 174636000, 64, 192, 576, 2880, 1728, 8640, 43200, 302400, 5184, 25920, 129600, 907200, 648000, 4536000, 31752000, 349272000, 15552
Offset: 0
a(0) = 1 since 1 is the empty product.
a(1) = 2 since 1 = 2^0, s = {0}, hence a(1) = prime(1)^(0+1) = 2^1 = 2.
a(2) = 4 since 2 = 2^1, s = {1}, hence a(2) = 2^(1+1) = 4.
a(3) = 12 since 3 = 2^1+2^0, s = {1,0}, hence a(3) = 2^2*3^1 = 12, etc.
The table below relates first terms of this sequence greater than 1 to A272011 and A067255:
n A272011(n) a(n) A067255(a(n))
------------------------------------
1 0 2 1
2 1 4 2
3 1,0 12 2,1
4 2 8 3
5 2,0 24 3,1
6 2,1 72 3,2
7 2,1,0 360 3,2,1
8 3 16 4
9 3,0 48 4,1
10 3,1 144 4,2
11 3,1,0 720 4,2,1
12 3,2 432 4,3
13 3,2,0 2160 4,3,1
14 3,2,1 10800 4,3,2
15 3,2,1,0 75600 4,3,2,1
16 4 32 5
...
This sequence appears below, seen as an irregular triangle T(m,j) delimited by 2^m where j = 1..2^(m-1) for m > 0:
1;
2;
4, 12;
8, 24, 72, 360;
16, 48, 144, 720, 432, 2160, 10800, 75600;
...
T(m,1) = 2^m.
T(m,2^(m-1)) = A006939(m) for m > 0.
-
Array[Times @@ MapIndexed[Prime[First[#2]]^(#1 + 1) &, Length[#] - Position[#, 1][[All, 1]] ] &[IntegerDigits[#, 2]] &, 48, 0]
A145108
Multiples of 4 that are primally tight and have strictly ascending powers.
Original entry on oeis.org
4, 8, 16, 32, 64, 108, 128, 256, 324, 512, 648, 972, 1024, 1944, 2048, 2916, 3888, 4096, 5832, 8192, 8748, 11664, 16384, 17496, 23328, 26244, 32768, 34992, 52488, 65536, 67500, 69984, 78732, 104976, 131072, 139968, 157464, 209952, 236196, 262144
Offset: 1
A161812
Numbers with decreasing but not strictly decreasing prime signature.
Original entry on oeis.org
6, 30, 36, 60, 120, 180, 210, 216, 240, 420, 480, 840, 900, 960, 1080, 1260, 1296, 1680, 1800, 1920, 2310, 2520, 3360, 3600, 3840, 4620, 5040, 5400, 6300, 6480, 6720, 7200, 7560, 7680, 7776, 9240, 10080, 12600, 13440, 13860, 14400, 15120, 15360, 18480
Offset: 1
a(1) = 2*3, a(2) = 2*3*5, a(3) = 2^2*3^2, a(4) = 2^2*3*5.
-
okQ[n_] := Module[{pp, ee}, {pp, ee} = Transpose[FactorInteger[n]]; Length[pp] == PrimePi[pp // Last] && GreaterEqual @@ ee && Sort[ee] != Union[ee]]; Select[Range[20000], okQ] (* Jean-François Alcover, Jun 17 2019 *)
A332644
Largest of the least integers of prime signatures over all partitions of n into distinct parts.
Original entry on oeis.org
1, 2, 4, 12, 24, 72, 360, 720, 2160, 10800, 75600, 151200, 453600, 2268000, 15876000, 174636000, 349272000, 1047816000, 5239080000, 36673560000, 403409160000, 5244319080000, 10488638160000, 31465914480000, 157329572400000, 1101307006800000, 12114377074800000
Offset: 0
Cf.
A000009,
A000040,
A000217,
A002110,
A002260,
A003056,
A001221,
A001222,
A007814,
A037126,
A046523,
A123578,
A328524.
-
b:= proc(n, i, j) option remember;
`if`(i*(i+1)/2 b(n$2, 1):
seq(a(n), n=0..30);
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, a(n-1)*
ithprime(n-(t-> t*(t+1)/2)(floor((sqrt(8*n-7)-1)/2))))
end:
seq(a(n), n=0..30);
-
b[n_, i_, j_] := b[n, i, j] = If[i(i+1)/2 < n, 0, If[n == 0, 1, Max[b[n, i - 1, j], Prime[j]^i b[n - i, Min[n - i, i - 1], j + 1]]]];
a[n_] := b[n, n, 1];
a /@ Range[0, 30] (* Jean-François Alcover, May 07 2020, after 1st Maple program *)
Comments