A295182
a(n) = n! * [x^n] exp(-n*x)/(1 - x)^n.
Original entry on oeis.org
1, 0, 2, 6, 72, 620, 8640, 122346, 2156672, 41367672, 905126400, 21646532270, 570077595648, 16268377195044, 502096929431552, 16629319748711250, 588938142209310720, 22196966267762213744, 887352465220427317248, 37496112562144553167062, 1670071417348195942400000, 78195398849926292810318940
Offset: 0
-
S:= series((exp(-x)/(1-x))^n,x,30):
seq(n!*coeff(S,x,n),n=0..29); # Robert Israel, Nov 16 2017
-
Table[n! SeriesCoefficient[Exp[-n x]/(1 - x)^n, {x, 0, n}], {n, 0, 21}]
A383344
Expansion of e.g.f. exp(-4*x) / (1-x)^4.
Original entry on oeis.org
1, 0, 4, 8, 72, 416, 3520, 31104, 316288, 3525632, 43117056, 572195840, 8191304704, 125761056768, 2060841582592, 35894401335296, 662066514984960, 12890305925218304, 264155723747688448, 5682905054074109952, 128051031032232411136, 3015653024970577018880
Offset: 0
A383381
Expansion of e.g.f. exp(-2*x) / (1-x)^5.
Original entry on oeis.org
1, 3, 14, 82, 576, 4688, 43264, 445632, 5062016, 62812288, 844863744, 12239474432, 189939644416, 3142842052608, 55223903596544, 1026805938614272, 20139224002953216, 415503046091767808, 8994794537935765504, 203848794955954716672, 4826475681472562855936, 119162892472107134353408
Offset: 0
A087982
Maximal permanent of a nonsingular n X n (+1,-1)-matrix.
Original entry on oeis.org
1, 0, 2, 8, 24, 128
Offset: 1
a(4) = 8 from the following matrix:
-1 +1 +1 +1
+1 +1 +1 +1
+1 -1 +1 -1
-1 +1 +1 -1
- Mikhail V. Budrevich, Alexander E. Guterman, Kräuter conjecture on permanents is true, arXiv:1810.04439 [math.CO], 2018.
- Arnold R. Kräuter and Norbert Seifter, Some properties of the permanent of (1,-1)-matrices, Linear and Multilinear Algebra 15 (1984), 207-223.
- Norbert Seifter, Upper bounds for permanents of (1,-1)-matrices, Israel J. Math. 48 (1984), 69-78.
- Edward Tzu-Hsia Wang, On permanents of (1,-1)-matrices, Israel J. Math. 18 (1974), 353-361.
- Index entries for sequences related to binary matrices
A335111
a(n) = n! * Sum_{k=0..n-1} (-2)^k / k!.
Original entry on oeis.org
0, 1, -2, 6, -8, 40, 48, 784, 5248, 49536, 490240, 5403904, 64822272, 842742784, 11798284288, 176974510080, 2831591636992, 48137058942976, 866467058614272, 16462874118651904, 329257482362552320, 6914407129635618816, 152116956851937476608, 3498690007594658430976
Offset: 0
-
Table[n! Sum[(-2)^k/k!, {k, 0, n - 1}], {n, 0, 23}]
nmax = 23; CoefficientList[Series[Sum[k! x^k/(1 + 2 x)^(k + 1), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 23; CoefficientList[Series[x Exp[-2 x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
-
a(n) = n! * sum(k=0, n-1, (-2)^k / k!); \\ Michel Marcus, May 23 2020
A383380
Expansion of e.g.f. exp(-2*x) / (1-x)^4.
Original entry on oeis.org
1, 2, 8, 40, 248, 1808, 15136, 142784, 1496960, 17254144, 216740864, 2945973248, 43065951232, 673626675200, 11224114860032, 198447384666112, 3710328985124864, 73136238041563136, 1515739708283944960, 32947698735175172096, 749499782353468522496, 17806903161183314378752
Offset: 0
A176097
Degree of the hyperdeterminant of the cubic format (k+1) X (k+1) X (k+1).
Original entry on oeis.org
1, 4, 36, 272, 2150, 16992, 134848, 1072192, 8536914, 68036600, 542607560, 4329671040, 34561892560, 275979195520, 2204266118400, 17609217372416, 140698273234634, 1124340854572296, 8985828520591912, 71822662173752800
Offset: 0
For k=1, the hyperdeterminant of the matrix (a_ijk) (for 0 <= i,j,k <= 1) is (a_000 * a_111)^2 + (a001 * a110)^2 + (a_010 * a_101)^2 + (a_011 * a_100)^2 -2(a_000 * a_001 * a_110 * a_111 + a_000 * a_010 * a_101 * a_111 + a_000 * a_011 * a_100 * a_111 + a_001 * a_010 * a_101 * a_110 + a_001 * a_011 * a_110 * a_100 + a_010 * a_011 * a_101 * a_100) + 4(a_000 * a_011 * a_101 * a_110 + a_001 * a_010 * a_100 * a_111) (see Gelfand, Kapranov & Zelevinsky, pp. 2 and 448.) [Corrected by _Petros Hadjicostas_, Sep 12 2019]
- I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhauser, 2008, p. 456 (Ch. 14, Corollary 2.9).
- Arthur Cayley, On the theory of linear transformations, The Cambridge Mathematical Journal, Vol. IV, No. XXIII, February 1845, pp. 193-209. [Accessible only in the USA through the Hathi Trust Digital Library.]
- Arthur Cayley, On the theory of linear transformations, The collected mathematical papers of Arthur Cayley, Cambridge University Press (1889-1897), pp. 80-94. [Accessible through the University of Michigan Historical Math Collection; click on pp. 80 through 94.]
- Arthur Cayley, On linear transformations, Cambridge and Dublin Mathematical Journal, Vol. I, 1846, pp. 104-122. [Accessible only in the USA through the Hathi Trust Digital Library.]
- Arthur Cayley, On linear transformations, The collected mathematical papers of Arthur Cayley, Cambridge University Press (1889-1897), pp. 95-112. [Accessible through the University of Michigan Historical Math Collection; click on pp. 95 through 112.]
- I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Hyperdeterminants, Advances in Mathematics 96(2) (1992), 226-263; see Corollary 3.9 (p. 246).
- David G. Glynn, The modular counterparts of Cayley's hyperdeterminants, Bulletin of the Australian Mathematical Society 57(3) (1998), 479-492.
- Giorgio Ottaviani, Luca Sodomaco, and Emuanuele Ventura, Asymptotics of degrees and ED degrees of Segre products, arXiv:2008.11670 [math.AG], 2020.
- Ludwig Schläfli, Über die Resultante eines Systemes mehrerer algebraischen Gleichungen, ein Beitrag zur Theorie der Elimination, Denkschr. der Kaiserlicher Akad. der Wiss. math-naturwiss. Klasse, 4 Band, 1852.
- Eric Weisstein's World of Mathematics, Hyperdeterminant.
- Wikipedia, Hyperdeterminants.
-
a:= k-> add((j+k+1)! /(j!)^3 /(k-2*j)! *2^(k-2*j), j=0..floor(k/2)): seq(a(n), n=0..20);
# Second program:
a := proc(n) option remember; if n = 0 then return 1 elif n = 1 then return 4 fi;
(a(n-1)*(21*n^3-10*n^2-9*n+6)+a(n-2)*(24*n^3+16*n^2))/((3*n-1)*n^2) end:
seq(a(n), n=0..19); # Peter Luschny, Sep 12 2019
-
Table[Sum[(j + n + 1)!*2^(n - 2*j)/(j!^3*(n - 2*j)!), {j, 0, n/2}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 12 2019 *)
A335595
E.g.f.: exp(-x * (2 + x)) / (1 - x)^2.
Original entry on oeis.org
1, 0, 0, 4, 12, 48, 400, 3120, 25872, 251776, 2715264, 31809600, 405296320, 5580385536, 82469607168, 1302102360832, 21875297337600, 389590168842240, 7331376554610688, 145352459953603584, 3028176414606560256, 66135374473635328000, 1510938930307368898560, 36038691473858577444864
Offset: 0
-
A335595 := proc(n)
option remember ;
if n = 0 then
1;
else
2*add(binomial(n-1,k-1)*(k-1)!*procname(n-k),k=3..n) ;
end if;
end proc:
seq(A335595(n),n=0..42) ; # R. J. Mathar, Aug 20 2021
-
nmax = 23; CoefficientList[Series[Exp[-x (2 + x)]/(1 - x)^2, {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = 2 Sum[Binomial[n - 1, k - 1] (k - 1)! a[n - k], {k, 3, n}]; Table[a[n], {n, 0, 23}]
Table[Sum[Binomial[n, k] HermiteH[k, -1] (n - k + 1)!, {k, 0, n}], {n, 0, 23}]
-
my(x='x+O('x^30)); Vec(serlaplace(exp(-x*(2+x))/(1-x)^2)) \\ Michel Marcus, Nov 21 2020
A176901
Number of 3 X n semireduced Latin rectangles, that is, having exactly n fixed points in the first two rows.
Original entry on oeis.org
4, 72, 1584, 70720, 3948480, 284570496, 25574768128, 2808243910656, 369925183388160, 57585548812887040, 10458478438093154304, 2191805683821733404672, 525011528578874444283904, 142540766765931981615759360, 43542026550306796238178877440, 14867182204795857282384287236096, 5640920219495105293649671985430528
Offset: 3
- V. S. Shevelev, Reduced Latin rectangles and square matrices with equal row and column sums, Diskr. Mat.(J. of the Akademy of Sciences of Russia) 4(1992), 91-110.
- V. S. Shevelev, Modern enumeration theory of permutations with restricted positions, Diskr. Mat., 1993, 5, no.1, 3-35 (Russian).
- V. S. Shevelev, Modern enumeration theory of permutations with restricted positions, English translation, Discrete Math. and Appl., 1993, 3:3, 229-263 (pp. 255-257).
A337615
T(n, k) = binomial(n, k)*sf(n-k)*sf(k) where sf is the subfactorial (A000166). Triangle read by rows, for 0 <= k <= n.
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 2, 0, 0, 2, 9, 0, 6, 0, 9, 44, 0, 20, 20, 0, 44, 265, 0, 135, 80, 135, 0, 265, 1854, 0, 924, 630, 630, 924, 0, 1854, 14833, 0, 7420, 4928, 5670, 4928, 7420, 0, 14833, 133496, 0, 66744, 44520, 49896, 49896, 44520, 66744, 0, 133496
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 0;
[2] 1, 0, 1;
[3] 2, 0, 0, 2;
[4] 9, 0, 6, 0, 9;
[5] 44, 0, 20, 20, 0, 44;
[6] 265, 0, 135, 80, 135, 0, 265;
[7] 1854, 0, 924, 630, 630, 924, 0, 1854;
[8] 14833, 0, 7420, 4928, 5670, 4928, 7420, 0, 14833;
[9] 133496, 0, 66744, 44520, 49896, 49896, 44520, 66744, 0, 133496.
-
sf := n -> add((-1)^(n-j)*pochhammer(n-j+1, j), j=0..n):
T := (n, k) -> binomial(n,k)*sf(n-k)*sf(k):
seq(seq(T(n, k), k=0..n), n=0..9);
Comments