cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A284759 a(n) = (Sum_{i=1..n-1} i^(n-2)) mod n^3.

Original entry on oeis.org

0, 1, 3, 14, 100, 115, 196, 500, 189, 333, 847, 1022, 1352, 1671, 1920, 3432, 3757, 2937, 1444, 7730, 1092, 427, 4232, 8668, 15000, 13037, 19197, 20902, 1682, 17999, 16337, 27856, 32043, 31873, 16170, 14298, 47915, 5603, 12792, 8260, 16810, 18949, 51772, 64526
Offset: 1

Views

Author

Felix Fröhlich, Apr 02 2017

Keywords

Comments

Conjecture: For n > 1, a(n) = 0 if and only if n is a term of A088164, i.e., n is a Wolstenholme prime (cf. Mestrovic, 2012, Conjecture 2.10).

Crossrefs

Programs

  • Maple
    seq(add(i^(n-2),i=1..n-1) mod n^3, n=1..100);
  • Mathematica
    Table[Mod[Sum[i^(n - 2), {i, n - 1}], n^3], {n, 44}] (* Michael De Vlieger, Apr 02 2017 *)
  • PARI
    a(n) = lift(Mod(sum(i=1, n-1, i^(n-2)), n^3))
    
  • PARI
    a(n)=my(m=n^3,e=n-2); lift(sum(i=1,n-1, Mod(i,m)^e)) \\ Charles R Greathouse IV, Apr 07 2017

Formula

a(n) = A076015(n-1) modulo A000578(n).

A290059 a(n) = binomial(2*prime(n)-1, prime(n)-1) where prime(n) is the n-th prime.

Original entry on oeis.org

3, 10, 126, 1716, 352716, 5200300, 1166803110, 17672631900, 4116715363800, 15033633249770520, 232714176627630544, 873065282167813104916, 212392290424395860814420, 3318776542511877736535400, 812850570172585125274307760, 3136262529306125724764953838760
Offset: 1

Views

Author

Martin Renner, Jul 19 2017

Keywords

Comments

Charles Babbage (1791-1871) proved in 1819 that for every prime p > 2 this sequence is congruent to 1 (mod p^2).
Joseph Wolstenholme (1829-1891) proved in 1862 that for every prime p > 3 this sequence is congruent to 1 (mod p^3).

Crossrefs

Cf. A088164. Subsequence of A001700.

Programs

  • Maple
    seq(binomial(2*ithprime(i)-1,ithprime(i)-1),i=1..16);
  • Mathematica
    Array[Function[p, Binomial[2*p - 1, p - 1]]@ Prime@ # &, 16] (* Michael De Vlieger, Jul 19 2017 *)
    Binomial[2#-1,#-1]&/@Prime[Range[20]] (* Harvey P. Dale, Mar 29 2024 *)
  • PARI
    a(n) = my(p=prime(n)); binomial(2*p-1, p-1); \\ Michel Marcus, Jul 19 2017
    
  • Python
    from sympy import prime, binomial
    def a(n):
        p=prime(n)
        return binomial(2*p - 1, p - 1)
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 20 2017

Formula

log(a(n)) ~ 2*log(2)*n * (log(n) + log(log(n)) - 1). - Vaclav Kotesovec, May 07 2022

A290347 Numerators of the Harary index for the n-halved cube graph.

Original entry on oeis.org

0, 1, 6, 26, 100, 1096, 3920, 13936, 16544, 296256, 1068672, 11652352, 42658304, 1100471296, 4079876096, 15205967872, 56939270144, 642281037824, 2423854317568, 9177027411968, 34846713511936, 1459319692460032, 5568939824513024, 21297365878571008
Offset: 1

Views

Author

Eric W. Weisstein, Jul 28 2017

Keywords

Comments

For p > 3, if p is prime, then p^2 divides a(p). Conjecture: for n > 3, if n^2 divides a(n), then n is prime. Primes p such that p^3 diviedes a(p) are probably A088164. - Thomas Ordowski, Mar 30 2025

Examples

			First few terms are 0, 1, 6, 26, 100, 1096/3, 3920/3, 13936/3, 16544, 296256/5, ....
		

Crossrefs

Cf. A000265, A088164, A290348 (denominators), A330718.

Programs

  • Mathematica
    Table[-2^(n - 1) HarmonicNumber[n] - 2^(2 n - 1) Re[LerchPhi[2, 1, n + 1]], {n, 20}] // Numerator

Formula

a(n) = -2^(n-1)*HarmonicNumber(n)-2^(2*n-1)*Re(LerchPhi(2,1,n+1)).
For n > 1, A000265(a(n)) = A330718(n). - Thomas Ordowski, Mar 30 2025

A290815 Numbers m such that the numerator of Sum_{k=1..m, gcd(k,m) = 1} 1/k is divisible by m^3.

Original entry on oeis.org

1, 39, 78, 155, 310, 465, 546, 793, 798, 930, 1092, 1586, 1638, 1860, 2170, 2379, 2394, 3172, 3276, 3965, 4340, 4758, 4914, 5219, 6045, 6510, 7137, 7182, 7930, 9516, 9828, 10374, 10438, 11102, 11895, 12090, 13020, 14274, 15657, 15860, 16843, 16891, 18135
Offset: 1

Views

Author

Amiram Eldar, Aug 11 2017

Keywords

Comments

A generalization of Wolstenholme primes (A088164) for composite number.
Leudesdorf proved in 1888 that the numerator of Sum_{k=1..n, gcd(k,n)=1} 1/k is divisible by n^2 for all (but not only) numbers n with gcd(n,6)=1, which is a generalization of Wolstenholme's theorem.
Terms that are coprime to 6: 1, 155, 793, 3965, 5219, 16843, 16891, 51305, ...
a(41) = A088164(1) = 16843.
A general conjecture: if, for some e > 0, m^e | Numerator(Sum_{k=1..m, gcd(k,m)=1} 1/k), then m^(e-1) | Numerator(Sum_{k=1..m, gcd(k,m)=1} 1/k^2). Note: in this case, the exponent e = 3. Problem: are there numbers m > 1 such that m^4 | Numerator(Sum_{k=1..m, gcd(k,m)=1} 1/k)? - Thomas Ordowski, Aug 10 2019
This general conjecture was checked up to 10^4. This problem has no solution up to 10^5. - Amiram Eldar, Aug 10 2019
It appears that all odd terms of this sequence are odd numbers m such that the numerator of Sum_{k=1..m, gcd(k,m)=1} 1/k^2 is divisible by m^2. - Thomas Ordowski, Aug 12 2019

Examples

			Sum_{k=1..39, gcd(k,39)=1} 1/k = 46855131783993/15222026943200, and 46855131783993 = 39^3 * 789884047, thus 39 is in the sequence.
		

References

  • G. H. Hardy and E. M. Wright, Introduction to the theory of numbers, 5th edition, Oxford, England: Clarendon Press, 1979, pp. 100-102.

Crossrefs

Programs

  • Mathematica
    seqQ[n_] :=  Module[{}, g[m_] := GCD[n, m] == 1; Divisible[Numerator[Plus @@ (1/Select[Range[n], g])], n^3]]; Select[Range[10^5], seqQ]
  • PARI
    isok(n) = numerator(sum(k=1, n, if (gcd(n, k)==1, 1/k))) % n^3 == 0; \\ Michel Marcus, Aug 11 2017
    
  • PARI
    upto(n) = {my(v = vector(n), d = divisors(n), res = List(), squarefreepart(n) = factorback(factorint(n)[, 1])); v[1] = 1; for(i = 2, n, v[i] = v[i-1] + 1/i; ); for(j = 1, n, fr = v[j]; d = divisors(squarefreepart(j)); for(i = 2, #d, fr += 1/d[i] * v[j/d[i]] * (-1)^omega(d[i]) ); if(numerator(fr) % j^3 == 0, listput(res, j); ) ); res } \\ David A. Corneth, Aug 23 2019

A332786 a(n) = numerator(-1/n + Sum_{k=1..n} 2^(k-1)/k).

Original entry on oeis.org

0, 3, 3, 61, 25, 137, 343, 32663, 2357, 74689, 66671, 5299069, 2416531, 115545821, 106974277, 637525199, 74575583, 1588674349, 4496071973, 3234136824109, 1535024393629, 5843920343363, 5575228585159, 1961561381531581, 93953561866435, 9016382638527647, 2888981280567587, 200248741591132607, 96525489421136333
Offset: 1

Views

Author

Thomas Ordowski, Feb 24 2020

Keywords

Comments

If p > 3 is a prime, then p^2 | a(p).
Does the above statement follow from Wolstenholme's theorem?
If p is a Wolstenholme prime (A088164), then p^3 | a(p).
However, it should be noted that also 7^3 | a(7).
Conjecture: there are no pseudoprimes m such that m^2 | a(m).
Is 7^2 the only weak pseudoprime (i.e., a composite m such that m | a(m))?

Examples

			a(5) = numerator(-1/5 + 1/1+2/2+4/3+8/4+16/5) = numerator(128/15 - 1/5) = numerator(25/3) = 25.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local k; numer(-1/n + add(2^(k-1)/k,k=1..n)) end proc:
    map(f, [$1..30]); # Robert Israel, Sep 15 2024
  • Mathematica
    n = 30; Numerator[Accumulate @ Table[(2^(k-1))/k, {k, 1, n}] - 1/Range[n]] (* Amiram Eldar, Feb 24 2020 *)
  • PARI
    a(n) = numerator(-1/n + sum(k=1, n, 2^(k-1)/k)); \\ Michel Marcus, Feb 24 2020

Formula

a(n) = numerator(-2/n + S(n))/2 for odd n and a(n) = numerator(-2/n + S(n)) for even n, where S(n) = Sum_{k=1..n} 2^k/k, see A108866 / A229726.
a(n) = numerator(Sum_{k=1..n} (2^(k-1)-1)/k + Sum_{k=1..n-1} 1/k), see A330718 / A330719 and A001008 / A002805.

Extensions

More terms from Amiram Eldar, Feb 24 2020

A212557 Primes p such that (p, p-9) is an irregular pair.

Original entry on oeis.org

67, 877
Offset: 1

Views

Author

Felix Fröhlich, May 21 2012

Keywords

Comments

No further terms found up to 163577833 in extended tables (see Buhler link). - Michel Marcus, Apr 17 2014

Crossrefs

Special instances of A000928. Variant of A088164 (for the terms of A088164, (p, p-3) is an irregular pair).

Programs

  • PARI
    is(n)=lift(Mod(numerator(bernfrac(n-9)), n)==0)
    forprime(p=8, , if(is(p), print1(p, ", "))) \\ Felix Fröhlich, Jan 19 2015

A263429 Smallest prime p such that binomial(2*p-1, p-1) == 1 (mod p^n), or 0 if no such p exists.

Original entry on oeis.org

2, 3, 5, 16843
Offset: 1

Views

Author

Felix Fröhlich, Oct 18 2015

Keywords

Comments

For n > 1, smallest p = prime(i) such that A244919(i) = n.
For n > 3, p is a term of A088164.
Conjecture: a(n) = 0 for n > 4 (McIntosh, 1995, p. 387).

Crossrefs

Programs

  • PARI
    a(n) = my(p=2); while(Mod(binomial(2*p-1, p-1), p^n)!=1, p=nextprime(p+1)); p

A282410 a(n) = binomial(2*p-1, p-1) modulo p^5, where p = prime(n).

Original entry on oeis.org

3, 10, 126, 1716, 30614, 2198, 1100513, 713337, 4635628, 4511966, 15729649, 49285370, 10820598, 115444165, 110571496, 84562137, 145202954, 386548644, 208729523, 1232287574, 790871562, 2277840181, 3525066856, 4912928962, 7258488370, 8723558568, 9006255935
Offset: 1

Views

Author

Felix Fröhlich, Feb 14 2017

Keywords

Comments

Conjecture: a(n) != 1 for all n (cf. McIntosh, 1995, p. 387).
See arXiv:1502.05750, Theorem 2 for several conditions equivalent to p having a(n) = 1.
Clearly, a prime p such that a(n) = 1 must be a Wolstenholme prime, i.e., a term of A088164.
a(n) is prime for n: 1, 7, 19, 59, 76, 92, 109, 112, 165, 196, 221, 249, 263, 326, etc. Robert G. Wilson v, Feb 14 2017

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{p = Prime@n}, Mod[ Binomial[ 2p -1, p -1], p^5]]; Array[f, 27] (* Robert G. Wilson v, Feb 14 2017 *)
    Table[Mod[Binomial[2p-1,p-1],p^5],{p,Prime[Range[30]]}] (* Harvey P. Dale, Jul 07 2022 *)
  • PARI
    a(n) = my(p=prime(n)); lift(Mod(binomial(2*p-1, p-1), p^5))
    
  • Python
    from sympy import Mod, binomial, prime
    def A282410(n): return int(Mod(binomial(2*(p:=prime(n))-1,p-1,evaluate=False),p**5)) # Chai Wah Wu, Apr 24 2025

A276808 Odd prime numbers p such that p*Bernoulli(p-1) + (p-1)!*(p-1) == 0 (mod p^3).

Original entry on oeis.org

17, 1733, 18433
Offset: 1

Views

Author

René Gy, Sep 18 2016

Keywords

Comments

For all other odd primes, the congruence holds mod p^2 only.

Crossrefs

Programs

  • PARI
    lista(nn) = {forprime(p=3, nn, if (!((p*bernfrac(p-1) + (p-1)!*(p-1)) % p^3) , print1(p, ", ")););} \\ Michel Marcus, Sep 18 2016

A309398 a(n) is the nearest integer to log(log(10^n)).

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Felix Fröhlich, Sep 27 2019

Keywords

Comments

The sequence grows relatively slowly. For example, for n < 10^7, a(n) <= 17.
a(n) is roughly the expected number of Wieferich primes (cf. A001220 and Knauer, Richstein, 2005, p. 1560) as well as the expected number of Fibonacci-Wieferich primes (Wall-Sun-Sun primes) (cf. McIntosh, Roettger, 2007, p. 2091) and Wolstenholme primes (cf. A088164 and McIntosh, 1995, p. 387) with at most n digits. It is also roughly the expected number of Wilson primes with at most n digits (cf. A007540 and Costa, Gerbicz, Harvey, 2014).

Crossrefs

Programs

  • Mathematica
    Round[Log[Log[10^Range[90]]]] (* Harvey P. Dale, Jan 16 2024 *)
  • PARI
    a(n) = round(log(log(10^n)))

Formula

a(n) = round(log(log(10^n))) = log n + O(1).
Previous Showing 21-30 of 32 results. Next