cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A367226 Numbers m whose prime indices have a nonnegative linear combination equal to bigomega(m).

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 28, 30, 32, 33, 34, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 56, 57, 58, 60, 62, 64, 66, 68, 69, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 87, 88, 90, 92, 93, 94, 96, 98, 100, 102, 104
Offset: 1

Views

Author

Gus Wiseman, Nov 15 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are the Heinz numbers of the partitions counted by A367218.

Examples

			The prime indices of 24 are {1,1,1,2} with (1+1+1+1) = 4 or (1+1)+(2) = 4 or (2+2) = 4, so 24 is in the sequence.
The terms together with their prime indices begin:
    1: {}
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
    9: {2,2}
   10: {1,3}
   12: {1,1,2}
   14: {1,4}
   15: {2,3}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   21: {2,4}
   22: {1,5}
   24: {1,1,1,2}
   26: {1,6}
   28: {1,1,4}
   30: {1,2,3}
   32: {1,1,1,1,1}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000700 counts self-conjugate partitions, ranks A088902.
A002865 counts partitions whose length is a part, ranks A325761.
A005117 ranks strict partitions, counted by A000009.
A046663 counts partitions of n without a subset-sum k, strict A365663.
A066208 ranks partitions into odd parts, counted by A000009.
A088809/A093971/A364534 count certain types of sum-full subsets.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A126796 counts complete partitions, ranks A325781.
A237668 counts sum-full partitions, ranks A364532.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Select[Range[100], combs[PrimeOmega[#], Union[prix[#]]]!={}&]

A367227 Numbers m whose prime indices have no nonnegative linear combination equal to bigomega(m).

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 23, 25, 27, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 63, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 99, 101, 103, 107, 109, 113, 115, 117, 119, 121, 127, 131, 133, 137, 139, 143, 145, 147, 149, 151, 153, 155, 157, 161, 163
Offset: 1

Views

Author

Gus Wiseman, Nov 15 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are the Heinz numbers of the partitions counted by A367219.

Examples

			The prime indices of 24 are {1,1,1,2} with (1+1+1+1) = 4 or (1+1)+(2) = 4 or (2+2) = 4, so 24 is not in the sequence.
The terms together with their prime indices begin:
     3: {2}        43: {14}        85: {3,7}
     5: {3}        47: {15}        89: {24}
     7: {4}        49: {4,4}       91: {4,6}
    11: {5}        53: {16}        95: {3,8}
    13: {6}        55: {3,5}       97: {25}
    17: {7}        59: {17}        99: {2,2,5}
    19: {8}        61: {18}       101: {26}
    23: {9}        63: {2,2,4}    103: {27}
    25: {3,3}      65: {3,6}      107: {28}
    27: {2,2,2}    67: {19}       109: {29}
    29: {10}       71: {20}       113: {30}
    31: {11}       73: {21}       115: {3,9}
    35: {3,4}      77: {4,5}      117: {2,2,6}
    37: {12}       79: {22}       119: {4,7}
    41: {13}       83: {23}       121: {5,5}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000700 counts self-conjugate partitions, ranks A088902.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124506 appears to count combination-free subsets, differences of A326083.
A229816 counts partitions whose length is not a part, ranks A367107.
A304792 counts subset-sums of partitions, strict A365925.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p], {k}]]]];
    combs[n_,y_]:=With[{s=Table[{k,i}, {k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Select[Range[100], combs[PrimeOmega[#], Union[prix[#]]]=={}&]

A365312 Number of strict integer partitions with sum <= n that cannot be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 2, 6, 4, 8, 7, 16, 6, 24, 17, 24, 20, 46, 22, 62, 31, 63, 57, 106, 35, 122, 90, 137, 88, 212, 74, 262, 134, 267, 206, 345, 121, 476, 294, 484, 232, 698, 242, 837, 389, 763, 571, 1185, 318, 1327, 634, 1392, 727, 1927, 640, 2056, 827, 2233, 1328
Offset: 0

Views

Author

Gus Wiseman, Sep 05 2023

Keywords

Examples

			The strict partition (7,3,2) has 19 = 1*7 + 2*3 + 3*2 so is not counted under a(19).
The strict partition (9,6,3) cannot be linearly combined to obtain 19, so is counted under a(19).
The a(0) = 0 through a(11) = 16 strict partitions:
  .  .  .  (2)  (3)  (2)  (4)  (2)    (3)  (2)    (3)    (2)
                     (3)  (5)  (3)    (5)  (4)    (4)    (3)
                     (4)       (4)    (6)  (5)    (6)    (4)
                               (5)    (7)  (6)    (7)    (5)
                               (6)         (7)    (8)    (6)
                               (4,2)       (8)    (9)    (7)
                                           (4,2)  (6,3)  (8)
                                           (6,2)         (9)
                                                         (10)
                                                         (4,2)
                                                         (5,4)
                                                         (6,2)
                                                         (6,3)
                                                         (6,4)
                                                         (7,3)
                                                         (8,2)
		

Crossrefs

The complement for positive coefficients is counted by A088314.
For positive coefficients we have A088528.
The complement is counted by A365311.
For non-strict partitions we have A365378, complement A365379.
The version for subsets is A365380, complement A365073.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A364350 counts combination-free strict partitions, non-strict A364915.
A364839 counts combination-full strict partitions, non-strict A364913.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Select[Join@@Array[IntegerPartitions,n], UnsameQ@@#&],combs[n,#]=={}&]],{n,0,10}]
  • Python
    from math import isqrt
    from sympy.utilities.iterables import partitions
    def A365312(n):
        a = {tuple(sorted(set(p))) for p in partitions(n)}
        return sum(1 for m in range(1,n+1) for b in partitions(m,m=isqrt(1+(n<<3))>>1) if max(b.values()) == 1 and not any(set(d).issubset(set(b)) for d in a)) # Chai Wah Wu, Sep 13 2023

Extensions

a(26)-a(58) from Chai Wah Wu, Sep 13 2023

A365311 Number of strict integer partitions with sum <= n that can be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 11, 12, 20, 24, 35, 38, 63, 63, 92, 112, 148, 160, 230, 244, 339, 383, 478, 533, 726, 781, 978, 1123, 1394, 1526, 1960, 2112, 2630, 2945, 3518, 3964, 4856, 5261, 6307, 7099, 8464, 9258, 11140, 12155, 14419, 16093, 18589, 20565, 24342, 26597, 30948
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2023

Keywords

Examples

			The strict partition (6,3) cannot be linearly combined to obtain 10, so is not counted under a(10).
The strict partition (4,2) has 6 = 1*4 + 1*2 so is counted under a(6), but (4,2) cannot be linearly combined to obtain 7 so is not counted under a(7).
The a(1) = 1 through a(7) = 12 strict partitions:
  (1)  (1)  (1)    (1)    (1)    (1)      (1)
       (2)  (3)    (2)    (5)    (2)      (7)
            (2,1)  (4)    (2,1)  (3)      (2,1)
                   (2,1)  (3,1)  (6)      (3,1)
                   (3,1)  (3,2)  (2,1)    (3,2)
                          (4,1)  (3,1)    (4,1)
                                 (3,2)    (4,3)
                                 (4,1)    (5,1)
                                 (4,2)    (5,2)
                                 (5,1)    (6,1)
                                 (3,2,1)  (3,2,1)
                                          (4,2,1)
		

Crossrefs

For positive coefficients we have A088314.
The positive complement is counted by A088528.
The version for subsets is A365073.
The complement is counted by A365312.
For non-strict partitions we have A365379.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A364350 counts combination-free strict partitions, non-strict A364915.
A364839 counts combination-full strict partitions, non-strict A364913.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Select[Join@@Array[IntegerPartitions,n],UnsameQ@@#&],combs[n,#]!={}&]],{n,10}]
  • Python
    from math import isqrt
    from sympy.utilities.iterables import partitions
    def A365311(n):
        a = {tuple(sorted(set(p))) for p in partitions(n)}
        return sum(1 for m in range(1,n+1) for b in partitions(m,m=isqrt(1+(n<<3))>>1) if max(b.values()) == 1 and any(set(d).issubset(set(b)) for d in a)) # Chai Wah Wu, Sep 13 2023

Extensions

a(26)-a(50) from Chai Wah Wu, Sep 13 2023

A365320 Number of pairs of distinct positive integers <= n that cannot be linearly combined with nonnegative coefficients to obtain n.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 1, 7, 5, 12, 12, 27, 14, 42, 36, 47, 47, 83, 58, 109, 80, 116, 126, 172, 111, 195, 192, 219, 202, 294, 210, 342, 286, 354, 369, 409, 324, 509, 480, 523, 452, 640, 507, 711, 622, 675, 747, 865, 654, 916, 842, 964, 922, 1124, 940, 1147, 1029
Offset: 0

Views

Author

Gus Wiseman, Sep 06 2023

Keywords

Comments

Are there only two cases of nonzero adjacent equal parts, at positions n = 9, 15?

Examples

			The pair p = (3,6) cannot be linearly combined to obtain 8 or 10, so p is counted under a(8) and a(10), but we have 9 = 1*3 + 1*6 or 9 = 3*3 + 0*6, so p not counted under a(9).
The a(5) = 2 through a(10) = 12 pairs:
  (2,4)  (4,5)  (2,4)  (3,6)  (2,4)  (3,6)
  (3,4)         (2,6)  (3,7)  (2,6)  (3,8)
                (3,5)  (5,6)  (2,8)  (3,9)
                (3,6)  (5,7)  (4,6)  (4,7)
                (4,5)  (6,7)  (4,7)  (4,8)
                (4,6)         (4,8)  (4,9)
                (5,6)         (5,6)  (6,7)
                              (5,7)  (6,8)
                              (5,8)  (6,9)
                              (6,7)  (7,8)
                              (6,8)  (7,9)
                              (7,8)  (8,9)
		

Crossrefs

The unrestricted version is A000217, ranks A001358.
For strict partitions we have A365312, complement A365311.
The (binary) complement is A365314, positive A365315.
The case of positive coefficients is A365321, for all subsets A365322.
For partitions we have A365378, complement A365379.
For all subsets instead of just pairs we have A365380, complement A365073.
A004526 counts partitions of length 2, shift right for strict.
A007865 counts sum-free subsets, complement A093971.
A179822 and A326080 count sum-closed subsets.
A326083 and A124506 appear to count combination-free subsets.
A364350 counts combination-free strict partitions.
A364914 and A365046 count combination-full subsets.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n],{2}],combs[n,#]=={}&]],{n,0,30}]
  • Python
    from itertools import count
    from sympy import divisors
    def A365320(n):
        a = set()
        for i in range(1,n+1):
            if not n%i:
                a.update(tuple(sorted((i,j))) for j in range(1,n+1) if j!=i)
            else:
                for j in count(0,i):
                    if j > n:
                        break
                    k = n-j
                    for d in divisors(k):
                        if d>=i:
                            break
                        a.add((d,i))
        return (n*(n-1)>>1)-len(a) # Chai Wah Wu, Sep 13 2023

A088528 Let m = number of ways of partitioning n into parts using all the parts of a subset of {1, 2, ..., n-1} whose sum of all parts of a subset is less than n; a(n) gives number of different subsets of {1, 2, ..., n-1} whose m is 0.

Original entry on oeis.org

0, 0, 1, 1, 3, 3, 6, 6, 10, 12, 17, 18, 26, 30, 40, 44, 58, 66, 84, 95, 120, 135, 166, 186, 230, 257, 314, 350, 421, 476, 561, 626, 749, 831, 986, 1095, 1276, 1424, 1666, 1849, 2138, 2388, 2741, 3042, 3522, 3879, 4441, 4928, 5617, 6222, 7084, 7802, 8852, 9800
Offset: 1

Views

Author

Naohiro Nomoto, Nov 16 2003

Keywords

Comments

Note that {2, 3} is counted for n = 6 because although 6 = 2+2+2 = 3+3, there is no partition that includes both 2 and 3. - David Wasserman, Aug 09 2005
Said differently, a(n) is the number of finite nonempty sets of positive integers with sum < n that cannot be linearly combined using all positive coefficients to obtain n. - Gus Wiseman, Sep 10 2023

Examples

			a(5)=3 because there are three different subsets, {2}, {3} & {4}; a(6)=3 because there are three different subsets, {4}, {5} & {2,3}.
From _Gus Wiseman_, Sep 10 2023: (Start)
The set {3,5} is not counted under a(8) because 1*3 + 1*5 = 8, but it is counted under a(9) and a(10), and it is not counted under a(11) because 2*3 + 1*5 = 11.
The a(3) = 1 through a(11) = 17 subsets:
  {2}  {3}  {2}  {4}    {2}    {3}    {2}    {3}      {2}
            {3}  {5}    {3}    {5}    {4}    {4}      {3}
            {4}  {2,3}  {4}    {6}    {5}    {6}      {4}
                        {5}    {7}    {6}    {7}      {5}
                        {6}    {2,5}  {7}    {8}      {6}
                        {2,4}  {3,4}  {8}    {9}      {7}
                                      {2,4}  {2,5}    {8}
                                      {2,6}  {2,7}    {9}
                                      {3,4}  {3,5}    {10}
                                      {3,5}  {3,6}    {2,4}
                                             {4,5}    {2,6}
                                             {2,3,4}  {2,8}
                                                      {3,6}
                                                      {3,7}
                                                      {4,5}
                                                      {4,6}
                                                      {2,3,5}
(End)
		

Crossrefs

The complement is A088571, allowing sum n A088314.
For sets with max < n instead of sum < n we have A365045, nonempty A070880.
For nonnegative coefficients we have A365312, complement A365311.
For sets with max <= n we have A365322.
For partitions we have A365323, nonnegative A365378.
A116861 and A364916 count linear combinations of strict partitions.
A326083 and A124506 appear to count combination-free subsets.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Select[Subsets[Range[n]],0Gus Wiseman, Sep 12 2023 *)

Extensions

More terms from David Wasserman, Aug 09 2005

A365322 Number of subsets of {1..n} that cannot be linearly combined using positive coefficients to obtain n.

Original entry on oeis.org

0, 1, 2, 5, 11, 26, 54, 116, 238, 490, 994, 2011, 4045, 8131, 16305, 32672, 65412, 130924, 261958, 524066, 1048301, 2096826, 4193904, 8388135, 16776641, 33553759, 67108053, 134216782, 268434324, 536869595, 1073740266, 2147481835, 4294965158, 8589932129
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2023

Keywords

Comments

We consider (for example) that 2x + y + 3z is a positive linear combination of (x,y,z), but 2x + y is not, as the coefficient of z is 0.

Examples

			The set {1,3} has 4 = 1 + 3 so is not counted under a(4). However, 3 cannot be written as a linear combination of {1,3} using all positive coefficients, so it is counted under a(3).
The a(1) = 1 through a(4) = 11 subsets:
  {}  {}     {}       {}
      {1,2}  {2}      {3}
             {1,3}    {1,4}
             {2,3}    {2,3}
             {1,2,3}  {2,4}
                      {3,4}
                      {1,2,3}
                      {1,2,4}
                      {1,3,4}
                      {2,3,4}
                      {1,2,3,4}
		

Crossrefs

The complement is counted by A088314.
The version for strict partitions is A088528.
The nonnegative complement is counted by A365073, without n A365542.
The binary complement is A365315, nonnegative A365314.
The binary version is A365321, nonnegative A365320.
For nonnegative coefficients we have A365380.
A085489 and A364755 count subsets without the sum of two distinct elements.
A124506 appears to count combination-free subsets, differences of A326083.
A179822 counts sum-closed subsets, first differences of A326080.
A364350 counts combination-free strict partitions, non-strict A364915.
A365046 counts combination-full subsets, first differences of A364914.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, {{}}, `if`(i<1, {},
          {b(n, i-1)[], seq(map(x->{x[], i}, b(n-i*j, i-1))[], j=1..n/i)}))
        end:
    a:= n-> 2^n-nops(b(n$2)):
    seq(a(n), n=0..33);  # Alois P. Heinz, Sep 04 2023
  • Mathematica
    cpu[n_,y_]:=With[{s=Table[{k,i},{k,Union[y]},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]],cpu[n,#]=={}&]],{n,0,10}]
  • Python
    from sympy.utilities.iterables import partitions
    def A365322(n): return (1<Chai Wah Wu, Sep 14 2023

Formula

a(n) = 2^n - A088314(n).
a(n) = A070880(n) + 2^(n-1) for n>=1.

Extensions

More terms from Alois P. Heinz, Sep 04 2023

A088880 Number of different values of A000005(m) when A056239(m) is equal to n.

Original entry on oeis.org

1, 1, 2, 2, 5, 4, 8, 6, 12, 10, 16, 13, 25, 18, 28, 25, 40, 32, 51, 40, 62, 51, 76, 62, 99, 77, 112, 92, 138, 109, 165, 130, 189, 153, 220, 178, 267, 208, 292, 240, 347, 274, 397, 315, 445, 361, 512, 407, 591, 464, 647, 524, 746, 588, 830, 664, 928, 746, 1034
Offset: 0

Views

Author

Naohiro Nomoto, Nov 28 2003

Keywords

Comments

Number of distinct values of Product_{k=1..n} (m(k,P)+1) where m(k,P) is multiplicity of part k in partition P, as P ranges over all partitions of n. - Vladeta Jovovic, May 24 2008

Crossrefs

Programs

  • Maple
    multipl := proc(P,p)
            local a;
            a := 0 ;
            for el in P do
                    if el = p then
                            a := a+1 ;
                    end if;
            end do;
            a ;
    end proc:
    A088880 := proc(n)
            local pro,pa,m,p;
            pro := {} ;
            for pa in combinat[partition](n) do
                    m := 1 ;
                    for p from 1 to n do
                            m := m*(1+multipl(pa,p)) ;
                    end do:
                    pro := pro union {m} ;
            end do:
            nops(pro) ;
    end proc: # R. J. Mathar, Sep 27 2011
    # second Maple program
    b:= proc(n, i) option remember; `if`(n=0 or i<2, {n+1},
           {seq(map(p->p*(j+1), b(n-i*j, i-1))[], j=0..n/i)})
        end:
    a:= n-> nops(b(n, n)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 09 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0 || i<2, {n+1}, Table[b[n-i*j, i-1]*(j+1), {j, 0, n/i}] // Flatten // Union]; a[n_] := Length[b[n, n]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)

A365314 Number of unordered pairs of distinct positive integers <= n that can be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

0, 0, 1, 3, 6, 8, 14, 14, 23, 24, 33, 28, 52, 36, 55, 58, 73, 53, 95, 62, 110, 94, 105, 81, 165, 105, 133, 132, 176, 112, 225, 123, 210, 174, 192, 186, 306, 157, 223, 218, 328, 180, 354, 192, 324, 315, 288, 216, 474, 260, 383, 311, 404, 254, 491, 338, 511, 360
Offset: 0

Views

Author

Gus Wiseman, Sep 05 2023

Keywords

Comments

Is there only one case of nonzero adjacent equal parts, at position n = 6?

Examples

			We have 19 = 4*3 + 1*7, so the pair (3,7) is counted under a(19).
The a(2) = 1 through a(7) = 14 pairs:
  (1,2)  (1,2)  (1,2)  (1,2)  (1,2)  (1,2)
         (1,3)  (1,3)  (1,3)  (1,3)  (1,3)
         (2,3)  (1,4)  (1,4)  (1,4)  (1,4)
                (2,3)  (1,5)  (1,5)  (1,5)
                (2,4)  (2,3)  (1,6)  (1,6)
                (3,4)  (2,5)  (2,3)  (1,7)
                       (3,5)  (2,4)  (2,3)
                       (4,5)  (2,5)  (2,5)
                              (2,6)  (2,7)
                              (3,4)  (3,4)
                              (3,5)  (3,7)
                              (3,6)  (4,7)
                              (4,6)  (5,7)
                              (5,6)  (6,7)
		

Crossrefs

The unrestricted version is A000217, ranks A001358.
For all subsets instead of just pairs we have A365073, complement A365380.
For strict partitions we have A365311, complement A365312.
The case of positive coefficients is A365315, for all subsets A088314.
The binary complement is A365320, positive A365321.
For partitions we have A365379, complement A365378.
A004526 counts partitions of length 2, shift right for strict.
A007865 counts sum-free subsets, complement A093971.
A179822 and A326080 count sum-closed subsets.
A364350 counts combination-free strict partitions.
A364914/A365046 count combination-full subsets, complement A326083/A124506.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n],{2}], combs[n,#]!={}&]],{n,0,30}]
  • Python
    from itertools import count
    from sympy import divisors
    def A365314(n):
        a = set()
        for i in range(1,n+1):
            if not n%i:
                a.update(tuple(sorted((i,j))) for j in range(1,n+1) if j!=i)
            else:
                for j in count(0,i):
                    if j > n:
                        break
                    k = n-j
                    for d in divisors(k):
                        if d>=i:
                            break
                        a.add((d,i))
        return len(a) # Chai Wah Wu, Sep 12 2023

A365378 Number of integer partitions with sum < n whose distinct parts cannot be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

0, 0, 0, 1, 1, 4, 2, 9, 5, 13, 10, 28, 7, 45, 25, 51, 32, 101, 31, 148, 50, 166, 106, 291, 47, 374, 176, 450, 179, 721, 121, 963, 285, 1080, 474, 1534, 200, 2140, 712, 2407, 599, 3539, 481, 4546, 1014, 4885
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2023

Keywords

Examples

			The partition (5,2,2) has distinct parts {2,5} and has 11 = 3*2 + 1*5, so is not counted under a(11).
The partition (4,2,2) cannot be linearly combined to obtain 9, so is counted under a(9).
The partition (4,2,2) has distinct parts {2,4} and has 10 = 5*2 + 0*4, so is not counted under a(10).
The a(3) = 1 through a(10) = 10 partitions:
  (2)  (3)  (2)   (4)  (2)    (3)   (2)     (3)
            (3)   (5)  (3)    (5)   (4)     (4)
            (4)        (4)    (6)   (5)     (6)
            (22)       (5)    (7)   (6)     (7)
                       (6)    (33)  (7)     (8)
                       (22)         (8)     (9)
                       (33)         (22)    (33)
                       (42)         (42)    (44)
                       (222)        (44)    (63)
                                    (62)    (333)
                                    (222)
                                    (422)
                                    (2222)
		

Crossrefs

The complement for subsets is A365073, positive coefficients A088314.
For strict partitions we have A365312, positive coefficients A088528.
For positive coefficients we have A365323.
The complement is counted by A365379.
The version for subsets is A365380, positive coefficients A365322.
The relatively prime case is A365382.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A364350 counts combination-free strict partitions, non-strict A364915.
A364839 counts combination-full strict partitions, non-strict A364913.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Join@@IntegerPartitions/@Range[n-1],combs[n,Union[#]]=={}&]],{n,0,10}]
  • Python
    from sympy.utilities.iterables import partitions
    def A365378(n):
        a = {tuple(sorted(set(p))) for p in partitions(n)}
        return sum(1 for m in range(1,n) for b in partitions(m) if not any(set(d).issubset(set(b)) for d in a)) # Chai Wah Wu, Sep 13 2023

Extensions

a(21)-a(45) from Chai Wah Wu, Sep 13 2023
Previous Showing 11-20 of 33 results. Next