cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 61 results. Next

A367396 Number of subsets of {1..n} whose cardinality is the sum of two distinct elements.

Original entry on oeis.org

0, 0, 0, 1, 3, 7, 17, 40, 90, 199, 435, 939, 2007, 4258, 8976, 18817, 39263, 81595, 168969, 348820, 718134, 1474863, 3022407, 6181687, 12621135, 25727686, 52369508, 106460521, 216162987, 438431215, 888359841, 1798371648, 3637518354, 7351824439, 14848255803
Offset: 0

Views

Author

Gus Wiseman, Nov 21 2023

Keywords

Examples

			The set s = {1,2,3,6,7,8} has the following sums of pairs of distinct elements: {3,4,5,7,8,9,10,11,13,14,15}. This does not include 6, so s is not counted under a(8).
The a(0) = 0 through a(6) = 17 subsets:
  .  .  .  {1,2,3}  {1,2,3}    {1,2,3}      {1,2,3}
                    {1,2,4}    {1,2,4}      {1,2,4}
                    {1,2,3,4}  {1,2,5}      {1,2,5}
                               {1,2,3,4}    {1,2,6}
                               {1,2,3,5}    {1,2,3,4}
                               {1,3,4,5}    {1,2,3,5}
                               {1,2,3,4,5}  {1,2,3,6}
                                            {1,3,4,5}
                                            {1,3,4,6}
                                            {1,3,5,6}
                                            {1,2,3,4,5}
                                            {1,2,3,4,6}
                                            {1,2,3,5,6}
                                            {1,2,4,5,6}
                                            {1,3,4,5,6}
                                            {2,3,4,5,6}
                                            {1,2,3,4,5,6}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free semi-full semi-free
-----------------------------------------------------------
A002865 counts partitions whose length is a part, complement A229816.
A364534 counts sum-full subsets.
A088809 and A093971 count subsets containing semi-sums.
A366738 counts semi-sums of partitions, strict A366741.
Triangles:
A365381 counts subsets with a subset summing to k, complement A366320.
A365541 counts subsets with a semi-sum k.
A367404 counts partitions with a semi-sum k, strict A367405.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[Total/@Subsets[#,{2}],Length[#]]&]],{n,0,10}]
  • Python
    from itertools import combinations
    def A367396(n): return sum(1 for k in range(3,n+1) for w in (set(d) for d in combinations(range(1,n+1),k)) if any({a,k-a}<=w for a in range(1,k+1>>1))) # Chai Wah Wu, Nov 21 2023

Formula

Conjectures from Chai Wah Wu, Nov 21 2023: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 4*a(n-3) - 5*a(n-4) + 2*a(n-5) for n > 4.
G.f.: x^3*(x - 1)/((2*x - 1)*(x^4 - 2*x^3 + x^2 - 2*x + 1)). (End)

Extensions

a(18)-a(33) from Chai Wah Wu, Nov 21 2023
a(34) from Paul Muljadi, Nov 24 2023

A367397 Numbers m such that bigomega(m) is the sum of prime indices of some semiprime divisor of m.

Original entry on oeis.org

4, 12, 18, 30, 36, 40, 42, 54, 60, 66, 78, 81, 90, 100, 102, 112, 114, 120, 126, 135, 138, 140, 150, 168, 174, 180, 186, 189, 198, 210, 220, 222, 225, 234, 246, 250, 252, 258, 260, 270, 280, 282, 297, 300, 306, 315, 318, 330, 336, 340, 342, 350, 351, 352, 354
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are the Heinz numbers of the partitions counted by A367394.

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free semi-full semi-free
-----------------------------------------------------------
A325761 ranks partitions whose length is a part, counted by A002865.
A088809 and A093971 count subsets containing semi-sums.
A236912 counts partitions with no semi-sum of the parts, ranks A364461.
A237113 counts partitions with a semi-sum of the parts, ranks A364462.
A304792 counts subset-sums of partitions, strict A365925.
A366738 counts semi-sums of partitions, strict A366741.
Triangles:
A365381 counts subsets with a subset summing to k, complement A366320.
A365541 counts subsets with a semi-sum k.
A367404 counts partitions with a semi-sum k, strict A367405.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],MemberQ[Total/@Subsets[prix[#],{2}],PrimeOmega[#]]&]

A367400 Number of subsets of {1..n} whose cardinality is not the sum of two distinct elements.

Original entry on oeis.org

1, 2, 4, 7, 13, 25, 47, 88, 166, 313, 589, 1109, 2089, 3934, 7408, 13951, 26273, 49477, 93175, 175468, 330442, 622289, 1171897, 2206921, 4156081, 7826746, 14739356, 27757207, 52272469, 98439697, 185381983, 349112000, 657448942, 1238110153
Offset: 0

Views

Author

Gus Wiseman, Nov 21 2023

Keywords

Examples

			The set s = {1,2,3,6,7,8} has the following sums of pairs of distinct elements: {3,4,5,7,8,9,10,11,13,14,15}. This does not include 6, so s is counted under a(8).
The a(0) = 1 through a(4) = 13 subsets:
  {}  {}   {}     {}     {}
      {1}  {1}    {1}    {1}
           {2}    {2}    {2}
           {1,2}  {3}    {3}
                  {1,2}  {4}
                  {1,3}  {1,2}
                  {2,3}  {1,3}
                         {1,4}
                         {2,3}
                         {2,4}
                         {3,4}
                         {1,3,4}
                         {2,3,4}
		

Crossrefs

The version containing n appears to be A112575.
The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free semi-full semi-free
-----------------------------------------------------------
A002865 counts partitions whose length is a part, complement A229816.
A364534 counts sum-full subsets.
A088809 and A093971 count subsets containing semi-sums.
A236912 counts partitions with no semi-sum of the parts, ranks A364461.
A366738 counts semi-sums of partitions, strict A366741.
Triangles:
A365381 counts subsets with a subset summing to k, complement A366320.
A365541 counts subsets with a semi-sum k.
A367404 counts partitions with a semi-sum k, strict A367405.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], FreeQ[Total/@Subsets[#, {2}], Length[#]]&]], {n,0,10}]
  • Python
    from itertools import combinations
    def A367400(n): return (n*(n+1)>>1)+1+sum(1 for k in range(3,n+1) for w in (set(d) for d in combinations(range(1,n+1),k)) if not any({a,k-a}<=w for a in range(1,k+1>>1))) # Chai Wah Wu, Nov 21 2023

Formula

Conjectures from Chai Wah Wu, Nov 21 2023: (Start)
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - a(n-4) for n > 3.
G.f.: (-x^3 + x^2 + 1)/(x^4 - 2*x^3 + x^2 - 2*x + 1). (End)

Extensions

a(18)-a(33) from Chai Wah Wu, Nov 21 2023

A367401 Numbers m such that bigomega(m) is not the sum of prime indices of any semiprime divisor of m.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are the Heinz numbers of the partitions counted by A367398.

Examples

			60 has semiprime divisor 10 with prime indices {1,3} summing to 4 = bigomega(60), so 60 is not in the sequence.
The terms together with their prime indices begin:
   1: {}
   2: {1}
   3: {2}
   5: {3}
   6: {1,2}
   7: {4}
   8: {1,1,1}
   9: {2,2}
  10: {1,3}
  11: {5}
  13: {6}
  14: {1,4}
  15: {2,3}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  20: {1,1,3}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free semi-full semi-free
-----------------------------------------------------------
A002865 counts partitions w/ length, complement A229816, ranks A325761.
A088809 and A093971 count subsets containing semi-sums.
A236912 counts partitions with no semi-sum of the parts, ranks A364461.
A237113 counts partitions with a semi-sum of the parts, ranks A364462.
A366738 counts semi-sums of partitions, strict A366741.
Triangles:
A365381 counts subsets with a subset summing to k, complement A366320.
A365541 counts subsets with a semi-sum k.
A367404 counts partitions with a semi-sum k, strict A367405.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100], FreeQ[Total/@Subsets[prix[#],{2}], PrimeOmega[#]]&]

A365069 Number of subsets of {1..n} containing n and some element equal to the sum of two or more distinct other elements. A variation of non-binary sum-full subsets without re-usable elements.

Original entry on oeis.org

0, 0, 0, 1, 2, 7, 17, 41, 88, 201, 418, 892, 1838, 3798, 7716, 15740
Offset: 0

Views

Author

Gus Wiseman, Aug 26 2023

Keywords

Comments

The complement is counted by A365071. The binary case is A364756. Allowing elements to be re-used gives A365070. A version for partitions (but not requiring n) is A237668.

Examples

			The subset {2,4,6} has 6 = 4 + 2 so is counted under a(6).
The subset {1,2,4,7} has 7 = 4 + 2 + 1 so is counted under a(7).
The subset {1,4,5,8} has 5 = 4 + 1 so is counted under a(8).
The a(0) = 0 through a(6) = 17 subsets:
  .  .  .  {1,2,3}  {1,3,4}    {1,4,5}      {1,5,6}
                    {1,2,3,4}  {2,3,5}      {2,4,6}
                               {1,2,3,5}    {1,2,3,6}
                               {1,2,4,5}    {1,2,4,6}
                               {1,3,4,5}    {1,2,5,6}
                               {2,3,4,5}    {1,3,4,6}
                               {1,2,3,4,5}  {1,3,5,6}
                                            {1,4,5,6}
                                            {2,3,4,6}
                                            {2,3,5,6}
                                            {2,4,5,6}
                                            {1,2,3,4,6}
                                            {1,2,3,5,6}
                                            {1,2,4,5,6}
                                            {1,3,4,5,6}
                                            {2,3,4,5,6}
                                            {1,2,3,4,5,6}
		

Crossrefs

The complement w/ re-usable parts is A288728, first differences of A007865.
First differences of A364534.
The binary complement is A364755, first differences of A085489.
The binary version is A364756, first differences of A088809.
The version with re-usable parts is A365070, first differences of A093971.
The complement is counted by A365071, first differences of A151897.
A124506 counts nonnegative combination-free subsets, differences of A326083.
A365046 counts nonnegative combination-full subsets, differences of A364914.
Strict partitions: A116861, A364272, A364349, A364350, A364839, A364916.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], MemberQ[#,n]&&Intersection[#, Total/@Subsets[#, {2,Length[#]}]]!={}&]],{n,0,10}]

Formula

a(n) = 2^(n-1) - A365070(n).
First differences of A364534.

A365071 Number of subsets of {1..n} containing n such that no element is a sum of distinct other elements. A variation of non-binary sum-free subsets without re-usable elements.

Original entry on oeis.org

0, 1, 2, 3, 6, 9, 15, 23, 40, 55, 94, 132, 210, 298, 476, 644, 1038, 1406, 2149, 2965, 4584, 6077, 9426, 12648, 19067, 25739, 38958, 51514, 78459, 104265, 155436, 208329, 312791, 411886, 620780, 823785, 1224414, 1631815, 2437015, 3217077, 4822991
Offset: 0

Views

Author

Gus Wiseman, Aug 26 2023

Keywords

Comments

The complement is counted by A365069. The binary version is A364755, complement A364756. For re-usable parts we have A288728, complement A365070.

Examples

			The subset {1,3,4,6} has 4 = 1 + 3 so is not counted under a(6).
The subset {2,3,4,5,6} has 6 = 2 + 4 and 4 = 1 + 3 so is not counted under a(6).
The a(0) = 0 through a(6) = 15 subsets:
  .  {1}  {2}    {3}    {4}      {5}      {6}
          {1,2}  {1,3}  {1,4}    {1,5}    {1,6}
                 {2,3}  {2,4}    {2,5}    {2,6}
                        {3,4}    {3,5}    {3,6}
                        {1,2,4}  {4,5}    {4,6}
                        {2,3,4}  {1,2,5}  {5,6}
                                 {1,3,5}  {1,2,6}
                                 {2,4,5}  {1,3,6}
                                 {3,4,5}  {1,4,6}
                                          {2,3,6}
                                          {2,5,6}
                                          {3,4,6}
                                          {3,5,6}
                                          {4,5,6}
                                          {3,4,5,6}
		

Crossrefs

First differences of A151897.
The version with re-usable parts is A288728 first differences of A007865.
The binary version is A364755, first differences of A085489.
The binary complement is A364756, first differences of A088809.
The complement is counted by A365069, first differences of A364534.
The complement w/ re-usable parts is A365070, first differences of A093971.
A108917 counts knapsack partitions, strict A275972.
A124506 counts combination-free subsets, differences of A326083.
A364350 counts combination-free strict partitions, complement A364839.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], MemberQ[#,n]&&Intersection[#, Total/@Subsets[#,{2,Length[#]}]]=={}&]], {n,0,10}]

Formula

a(n) + A365069(n) = 2^(n-1).
First differences of A151897.

Extensions

a(14) onwards added (using A151897) by Andrew Howroyd, Jan 13 2024

A365542 Number of subsets of {1..n-1} that can be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

0, 1, 2, 6, 10, 28, 48, 116, 224, 480, 920, 2000, 3840, 7984, 15936, 32320, 63968, 130176, 258304, 521920, 1041664, 2089472, 4171392, 8377856, 16726528, 33509632, 67004416, 134129664, 268111360, 536705024, 1072961536, 2146941952, 4293509120, 8588414976
Offset: 1

Views

Author

Gus Wiseman, Sep 09 2023

Keywords

Examples

			The a(2) = 1 through a(5) = 10 partitions:
  {1}  {1}    {1}      {1}
       {1,2}  {2}      {1,2}
              {1,2}    {1,3}
              {1,3}    {1,4}
              {2,3}    {2,3}
              {1,2,3}  {1,2,3}
                       {1,2,4}
                       {1,3,4}
                       {2,3,4}
                       {1,2,3,4}
		

Crossrefs

The case of positive coefficients is A365042, complement A365045.
For subsets of {1..n} instead of {1..n-1} we have A365073.
The binary complement is A365315.
The complement is counted by A365380.
A124506 and A326083 appear to count combination-free subsets.
A179822 and A326080 count sum-closed subsets.
A364350 counts combination-free strict partitions.
A364914 and A365046 count combination-full subsets.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n-1]],combs[n,#]!={}&]],{n,5}]
  • Python
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A365542(n):
        a = {tuple(sorted(set(p))) for p in partitions(n)}
        return sum(1 for m in range(1,n) for b in combinations(range(1,n),m) if any(set(d).issubset(set(b)) for d in a)) # Chai Wah Wu, Sep 12 2023

Extensions

More terms from Alois P. Heinz, Sep 13 2023

A366131 Number of subsets of {1..n} with two elements (possibly the same) summing to n.

Original entry on oeis.org

0, 0, 2, 2, 10, 14, 46, 74, 202, 350, 862, 1562, 3610, 6734, 14926, 28394, 61162, 117950, 249022, 484922, 1009210, 1979054, 4076206, 8034314, 16422922, 32491550, 66045982, 131029082, 265246810, 527304974, 1064175886, 2118785834, 4266269482, 8503841150, 17093775742, 34101458042, 68461196410, 136664112494
Offset: 0

Views

Author

Gus Wiseman, Oct 07 2023

Keywords

Examples

			The a(0) = 0 through a(5) = 14 subsets:
  .  .  {1}    {1,2}    {2}        {1,4}
        {1,2}  {1,2,3}  {1,2}      {2,3}
                        {1,3}      {1,2,3}
                        {2,3}      {1,2,4}
                        {2,4}      {1,3,4}
                        {1,2,3}    {1,4,5}
                        {1,2,4}    {2,3,4}
                        {1,3,4}    {2,3,5}
                        {2,3,4}    {1,2,3,4}
                        {1,2,3,4}  {1,2,3,5}
                                   {1,2,4,5}
                                   {1,3,4,5}
                                   {2,3,4,5}
                                   {1,2,3,4,5}
		

Crossrefs

The complement is counted by A117855.
For pairs summing to n + 1 we have A167936.
A068911 counts subsets of {1..n} w/o two distinct elements summing to n.
A093971/A088809/A364534 count certain types of sum-full subsets.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[Total/@Tuples[#,2],n]&]],{n,0,10}]
  • Python
    def A366131(n): return (1<>1)<<1) if n else 0 # Chai Wah Wu, Nov 14 2023

Formula

From Chai Wah Wu, Nov 14 2023: (Start)
a(n) = 2*a(n-1) + 3*a(n-2) - 6*a(n-3) for n > 3.
G.f.: 2*x^2*(1 - x)/((2*x - 1)*(3*x^2 - 1)). (End)

A088812 Number of subsets of {1, ..., n} that are neither double-free nor sum-free.

Original entry on oeis.org

0, 0, 0, 1, 2, 6, 21, 49, 119, 266, 626, 1315, 2859, 5878, 12798, 26038, 54485, 109976, 230159, 462634, 945846, 1897597, 3893242, 7798862, 15834340, 31695551, 64315161, 128693477, 259241944, 518614045, 1046344906, 2092965726, 4206946359, 8414499960
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 19 2003

Keywords

Formula

a(n) = 2^n - A088813(n) = A088808(n)-A088811(n) = A088809(n)-A088810(n).

Extensions

Terms a(28) and beyond from Fausto A. C. Cariboni, Sep 29 2020

A366130 Number of subsets of {1..n} with a subset summing to n + 1.

Original entry on oeis.org

0, 0, 1, 2, 7, 15, 38, 79, 184, 378, 823, 1682, 3552, 7208, 14948, 30154, 61698, 124302, 252125, 506521, 1022768, 2051555, 4127633, 8272147, 16607469, 33258510, 66680774, 133467385, 267349211, 535007304, 1071020315, 2142778192, 4288207796
Offset: 0

Views

Author

Gus Wiseman, Oct 07 2023

Keywords

Examples

			The subset S = {1,2,4} has subset {1,4} with sum 4+1 and {2,4} with sum 5+1 and {1,2,4} with sum 6+1, so S is counted under a(4), a(5), and a(6).
The a(0) = 0 through a(5) = 15 subsets:
  .  .  {1,2}  {1,3}    {1,4}      {1,5}
               {1,2,3}  {2,3}      {2,4}
                        {1,2,3}    {1,2,3}
                        {1,2,4}    {1,2,4}
                        {1,3,4}    {1,2,5}
                        {2,3,4}    {1,3,5}
                        {1,2,3,4}  {1,4,5}
                                   {2,3,4}
                                   {2,4,5}
                                   {1,2,3,4}
                                   {1,2,3,5}
                                   {1,2,4,5}
                                   {1,3,4,5}
                                   {2,3,4,5}
                                   {1,2,3,4,5}
		

Crossrefs

For pairs summing to n + 1 we have A167762, complement A038754.
For n instead of n + 1 we have A365376, for pairs summing to n A365544.
The complement is counted by A365377 shifted.
The complement for pairs summing to n is counted by A365377.
A068911 counts subsets of {1..n} w/o two distinct elements summing to n.
A093971/A088809/A364534 count certain types of sum-full subsets.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[Total/@Subsets[#],n+1]&]],{n,0,10}]
  • Python
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A366130(n):
        a = tuple(set(p.keys()) for p in partitions(n+1,k=n) if max(p.values(),default=0)==1)
        return sum(1 for k in range(2,n+1) for w in (set(d) for d in combinations(range(1,n+1),k)) if any(s<=w for s in a)) # Chai Wah Wu, Nov 24 2023

Formula

Diagonal k = n + 1 of A365381.

Extensions

a(20)-a(32) from Chai Wah Wu, Nov 24 2023
Previous Showing 51-60 of 61 results. Next