cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 46 results. Next

A295920 Number of twice-factorizations of n of type (P,R,R).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 30 2017

Keywords

Comments

a(n) is also the number of ways to choose a perfect divisor d|n and then a sequence of log_d(n) perfect divisors of d.

Examples

			The a(64) = 17 twice-factorizations are:
(2)*(2)*(2)*(2)*(2)*(2)  (2*2)*(2*2)*(2*2)  (2*2*2)*(2*2*2)  (2*2*2*2*2*2)
(2*2)*(2*2)*(4)          (2*2)*(4)*(2*2)    (4)*(2*2)*(2*2)
(2*2)*(4)*(4)            (4)*(2*2)*(4)      (4)*(4)*(2*2)
(2*2*2)*(8)              (8)*(2*2*2)
(4)*(4)*(4)              (4*4*4)
(8)*(8)                  (8*8)
(64)
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Length[Divisors[GCD@@FactorInteger[n^(1/d)][[All,2]]]]^d,{d,Divisors[GCD@@FactorInteger[n][[All,2]]]}],{n,100}]
  • PARI
    A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409
    A295920(n) = if(1==n,n,my(r); sumdiv(A052409(n), d, if(!ispower(n,d,&r),(1/0),numdiv(A052409(r))^d))); \\ Antti Karttunen, Dec 06 2018, after Mathematica-code

Formula

a(n) = Sum_{d|A052409(n)} A000005(A052409(n^(1/d)))^d. - Antti Karttunen, Dec 06 2018, after Mathematica-code

Extensions

More terms from Antti Karttunen, Dec 06 2018

A296131 Number of twice-factorizations of n where the first factorization is strict and the latter factorizations are constant, i.e., type (P,Q,R).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 8, 2, 2, 4, 4, 1, 5, 1, 9, 2, 2, 2, 9, 1, 2, 2, 8, 1, 5, 1, 4, 4, 2, 1, 13, 2, 4, 2, 4, 1, 8, 2, 8, 2, 2, 1, 11, 1, 2, 4, 16, 2, 5, 1, 4, 2, 5, 1, 18, 1, 2, 4, 4, 2, 5, 1, 13, 5, 2, 1, 11, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2017

Keywords

Comments

a(n) is the number of ways to choose a perfect divisor of each factor in a strict factorization of n.

Examples

			The a(24) = 8 twice-factorizations: (2)*(3)*(2*2), (2)*(3)*(4), (2)*(12), (3)*(2*2*2), (3)*(8), (2*2)*(6), (4)*(6), (24).
		

Crossrefs

Programs

  • Mathematica
    sfs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sfs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Product[DivisorSigma[0,GCD@@FactorInteger[d][[All,2]]],{d,fac}],{fac,sfs[n]}],{n,100}]

Formula

Dirichlet g.f.: Product_{n > 1}(1 + A089723(n)/n^s).

A296134 Number of twice-factorizations of n of type (R,Q,R).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2017

Keywords

Comments

a(n) is the number of ways to choose a strict integer partition of a divisor of A052409(n).

Examples

			The a(16) = 4 twice-factorizations: (2)*(2*2*2), (2*2*2*2), (4*4), (16).
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[GCD@@FactorInteger[n][[All,2]],PartitionsQ],{n,100}]
  • PARI
    A000009(n,k=(n-!(n%2))) = if(!n,1,my(s=0); while(k >= 1, if(k<=n, s += A000009(n-k,k)); k -= 2); (s));
    A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409
    A296134(n) = if(1==n,n,sumdiv(A052409(n),d,A000009(d))); \\ Antti Karttunen, Jul 29 2018

Formula

From Antti Karttunen, Jul 31 2018: (Start)
a(1) = 1; for n > 1, a(n) = Sum_{d|A052409(n)} A000009(d).
a(n) = A047966(A052409(n)). (End)

Extensions

More terms from Antti Karttunen, Jul 29 2018

A363742 Number of integer factorizations of n with different mean, median, and mode.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 4, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 4, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 7, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 4, 0, 1, 0, 3, 0, 1, 0, 0, 0, 0, 0, 7
Offset: 1

Views

Author

Gus Wiseman, Jun 27 2023

Keywords

Comments

An integer factorization of n is a multiset of positive integers > 1 with product n.
If there are multiple modes, then the mode is automatically considered different from the mean and median; otherwise, we take the unique mode.
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
Position of first appearance of n is: 1, 30, 48, 60, 72, 200, 160, 96, ...

Examples

			The a(n) factorizations for n = 30, 48, 60, 72, 96, 144:
  (2*3*5)  (2*3*8)    (2*5*6)    (2*4*9)    (2*6*8)    (2*8*9)
           (2*2*3*4)  (2*3*10)   (3*4*6)    (3*4*8)    (3*6*8)
                      (2*2*3*5)  (2*3*12)   (2*3*16)   (2*3*24)
                                 (2*2*3*6)  (2*4*12)   (2*4*18)
                                            (2*2*3*8)  (2*6*12)
                                            (2*2*4*6)  (3*4*12)
                                            (2*3*4*4)  (2*2*4*9)
                                                       (2*3*4*6)
                                                       (2*2*3*12)
                                                       (2*2*3*3*4)
		

Crossrefs

Just (mean) != (median): A359911, complement A359909, partitions A359894.
The version for partitions is A363720, equal A363719, ranks A363730.
For equal instead of unequal we have A363741.
A001055 counts factorizations, strict A045778, ordered A074206.
A316439 counts factorizations by length, A008284 partitions.
A363265 counts factorizations with a unique mode.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[facs[n],{Mean[#]}!={Median[#]}!=modes[#]&]],{n,100}]
  • PARI
    median(lista) = if((#lista)%2, lista[(1+#lista)/2], (lista[#lista/2]+lista[1+(#lista/2)])/2);
    uniqmode(lista) = { my(freqs=Map(),v); for(i=1,#lista,if(!mapisdefined(freqs,lista[i],&v), v = 0); mapput(freqs,lista[i],1+v)); my(keys=Vec(freqs), fr, mc=0, mf=0, isuniq=0); for(i=1,#keys, fr = mapget(freqs,keys[i]); if(fr>=mf, isuniq = (fr>mf); mf = fr; mc = keys[i])); if(!isuniq, -1, mc); }; \\ Returns -1 if not unique mode.
    all_different(facs) = { my(mean=(vecsum(facs)/#facs), med=median(facs), mode=uniqmode(facs)); ((mean!=med) &&  (mean!=mode) && (med!=mode)); };
    A363742(n, m=n, facs=List([])) = if(1==n, (#facs>0 && all_different(Vec(facs))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A363742(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Jan 29 2025

Extensions

More terms from Antti Karttunen, Jan 29 2025

A175084 Possible values for product of perfect divisors of n.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78
Offset: 1

Views

Author

Jaroslav Krizek, Jan 24 2010

Keywords

Comments

Perfect divisor of n is divisor d such that d^k = n for some k >= 1. All terms of this sequence occur only once. See A089723 (number of perfect divisors of n) and A175068 (product of perfect divisors of n).
Complement of A175085. - Jaroslav Krizek, Jan 30 2010

Crossrefs

Cf. A175087 (characteristic function).

Programs

  • Mathematica
    With[{nn = 78}, TakeWhile[#, # <= nn &] &@ Union@ Table[Apply[Times, Select[Divisors@ n, Or[# == 1, #^IntegerExponent[n, #] == n] &]], {n, nn}] ] (* Michael De Vlieger, Nov 21 2017 *)

A255165 a(n) = Sum_{k=2..n} floor(log(n)/log(k)), n >= 1.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
Offset: 1

Views

Author

Richard R. Forberg, Feb 15 2015

Keywords

Comments

The sum jumps up by 2 or more where n is a power of one or more k < n, otherwise it gains 1 with each increase in n.
First differences = A089723.
This calculation is analogous to that used for the sum of the number of divisors for all integers <= n in A006218.
a(n)+n gives the number of digits in the representations of n from base 2 to base n+1. - Christina Steffan, Dec 06 2015
Without floor, Sum_{k=2..n} log(n)/log(k) ~ n * (1 + 1/log(n) + 2/log(n)^2 + 6/log(n)^3 + 24/log(n)^4 + 120/log(n)^5 + ...). - Vaclav Kotesovec, Apr 06 2021

Examples

			The first jump is at n = 4 where, in the summation, log(4)/log(2), as it reaches a new floor.
Note: Possible complications exist calculating the floor function on ratios of logs that produce exact integers (e.g., in Mathematica). Adding an infinitesimal amount to n solves it.
		

Crossrefs

Programs

  • Magma
    [0] cat [&+[Floor(Log(n)/Log(k)):k in [2..n]]:n in [2..70]]; // Marius A. Burtea, Nov 13 2019
  • Mathematica
    Table[Sum[Floor[Log[n]/Log[k]], {k, 2, n}], {n, 1, 100}]
  • PARI
    a(n)=sum(k=2,n,log(n)\log(k)) \\ Anders Hellström, Dec 06 2015
    

Formula

a(n) = Sum_{k=2..n} floor(log(n)/log(k)), n >= 1.
It appears that a(n) = A089361(n) + n - 1. - Michel Marcus, Feb 17 2015
From Ridouane Oudra, Nov 13 2019: (Start)
a(n) = Sum_{i=2..n} floor(n^(1/i)).
a(n) = Sum_{i=1..floor(log_2(n))} floor(n^(1/i) - 1).
a(n) = A043000(n) - n + 1. (End)
a(n) ~ n. - Vaclav Kotesovec, Apr 06 2021

A259362 a(1) = 1, for n > 1: a(n) is the number of ways to write n as a nontrivial perfect power.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Doug Bell, Jun 24 2015

Keywords

Comments

a(n) = number of integer pairs (i,j) for distinct values of i where i > 0, j > 1 and n = i^j. Since 1 = 1^r for all real values of r, the requirement for a distinct i causes a(1) = 1 instead of a(1) = infinity.
Alternatively, the sequence can be defined as: a(1) = 1, for n > 1: a(n) = number of pairs (i,j) such that i > 0, j > 1 and n = i^j.
A007916 = n, where a(n) = 0.
A001597 = n, where a(n) > 0.
A175082 = n, where n = 1 or a(n) = 0.
A117453 = n, where n = 1 or a(n) > 1.
A175065 = n, where n > 1 and a(n) > 0 and this is the first occurrence in this sequence of a(n).
A072103 = n repeated a(n) times where n > 1.
A075802 = min(1, a(n)).
A175066 = a(n), where n = 1 or a(n) > 1. This sequence is an expansion of A175066.
A253642 = 0 followed by a(n), where n > 1 and a(n) > 0.
A175064 = a(1) followed by a(n) + 1, where n > 1 and a(n) > 0.
Where n > 1, A001597(x) = n (which implies a(n) > 0), i = A025478(x) and j = A253641(n), then a(n) = A000005(j) - 1, which is the number of factors of j greater than 1. The integer pair (i,j) comprises the smallest value i and the largest value j where i > 0, j > 1 and n = i^j. The a(n) pairs of (a,b) where a > 0, b > 1 and n = a^b are formed with b = each of the a(n) factors of j greater than 1. Examples for n = {8,4096}:
a(8) = 1, A001597(3) = 8, A025478(3) = 2, A253641(8) = 3, 8 = 2^3 and A000005(3) - 1 = 1 because there is one factor of 3 greater than 1 [3]. The set of pairs (a,b) is {(2,3)}.
a(4096) = 5, A001597(82) = 4096, A025478(82) = 2, A253641(4096) = 12, 4096 = 2^12 and A000005(12) - 1 = 5 because there are five factors of 12 greater than 1 [2,3,4,6,12]. The set of pairs (a,b) is {(64,2),(16,3),(8,4),(4,6),(2,12)}.
A023055 = the ordered list of x+1 with duplicates removed, where x is the number of consecutive zeros appearing in this sequence between any two nonzero terms.
A070428(x) = number of terms a(n) > 0 where n <= 10^x.
a(n) <= A188585(n).

Examples

			a(6) = 0 because there is no way to write 6 as a nontrivial perfect power.
a(9) = 1 because there is one way to write 9 as a nontrivial perfect power: 3^2.
a(16) = 2 because there are two ways to write 16 as a nontrivial perfect power: 2^4, 4^2.
From _Friedjof Tellkamp_, Jun 14 2025: (Start)
n:       1, 2, 3, 4, 5, 6, 7, 8, 9, ...
Squares: 1, 0, 0, 1, 0, 0, 0, 0, 1, ... (A010052)
Cubes:   1, 0, 0, 0, 0, 0, 0, 1, 0, ... (A010057)
...
Sum:    oo, 0, 0, 1, 0, 0, 0, 1, 1, ...
a(1)=1:  1, 0, 0, 1, 0, 0, 0, 1, 1, ... (= this sequence). (End)
		

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, Sum[Boole[IntegerQ[n^(1/k)]], {k, 2, Floor[Log[2, n]]}]]; Array[a, 100] (* Friedjof Tellkamp, Jun 14 2025 *)
    a[n_] := If[n == 1, 1, DivisorSigma[0, Apply[GCD, Transpose[FactorInteger[n]][[2]]]] - 1]; Array[a, 100] (* Michael Shamos, Jul 06 2025 *)
  • PARI
    a(n) = if (n==1, 1, sum(i=2, logint(n, 2), ispower(n, i))); \\ Michel Marcus, Apr 11 2025

Formula

a(1) = 1, for n > 1: a(n) = A000005(A253641(n)) - 1.
If n not in A001597, then a(n) = 0, otherwise a(n) = A175064(x) - 1 where A001597(x) = n.
From Friedjof Tellkamp, Jun 14 2025: (Start)
a(n) = A089723(n) - 1, for n > 1.
a(n) = A010052(n) + A010057(n) + A374016(n) + (...), for n > 1.
Sum_{k>=2..n} a(k) = A089361(n), for n > 1.
G.f.: x + Sum_{j>=2, k>=2} x^(j^k).
Dirichlet g.f.: 1 + Sum_{k>=2} zeta(k*s)-1. (End)

A294339 Number of ways to write 2^n as a finite power-tower of positive integers greater than one, allowing both left and right nesting of parentheses.

Original entry on oeis.org

1, 2, 2, 5, 2, 6, 2, 12, 5, 6, 2, 19, 2, 6, 6, 32, 2, 19, 2, 19, 6, 6, 2, 56, 5, 6, 12, 19, 2, 26, 2, 79, 6, 6, 6, 71, 2, 6, 6, 56, 2, 26, 2, 19, 19, 6, 2, 169, 5, 19, 6, 19, 2, 56, 6, 56, 6, 6, 2, 101, 2, 6, 19, 203, 6, 26, 2, 19, 6, 26, 2, 237, 2, 6, 19, 19
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2017

Keywords

Examples

			The a(6) = 6 ways are 64, 8^2, (2^3)^2, 4^3, (2^2)^3, 2^6.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; local F,t,s,g,a;
      F:= ifactors(n)[2];
      g:= igcd(op(map(t -> t[2],F)));
      t:= 1;
      for s in numtheory:-divisors(g) minus {1} do
        t:= t + procname(mul(a[1]^(a[2]/s),a=F))*procname(s)
      od;
      t
    end proc:
    seq(f(2^n),n=1..100); # Robert Israel, Dec 01 2017
  • Mathematica
    a[n_]:=1+Sum[a[n^(1/g)]*a[g],{g,Rest[Divisors[GCD@@FactorInteger[n][[All,2]]]]}];
    Table[a[2^n],{n,100}]

Formula

a(n) = A294338(2^n). - R. J. Mathar, Nov 27 2017

A296133 Number of twice-factorizations of n of type (Q,R,Q).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 5, 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 2, 7, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 7, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 9, 1, 2, 3, 6, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 7, 2, 2, 1, 9, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2017

Keywords

Examples

			The a(36) = 7 twice-factorizations are (2*3)*(6), (6)*(2*3), (2*3*6), (2*18), (3*12), (4*9), (36).
		

Crossrefs

Programs

  • Mathematica
    sfs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sfs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Join@@Function[fac,Select[Join@@Permutations/@sps[fac],SameQ@@Times@@@#&]]/@sfs[n]],{n,100}]

A304481 Turn the power-tower for n upside-down.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 32, 26, 27, 28, 29, 30, 31, 25, 33, 34, 35, 64, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 128, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 36, 65, 66, 67
Offset: 1

Views

Author

Gus Wiseman, May 13 2018

Keywords

Comments

This is an involution of the positive integers.
The power-tower for n is defined as follows. Let {c(i)} = A007916 denote the sequence of numbers > 1 which are not perfect powers. Every positive integer n has a unique representation as a tower n = c(x_1)^c(x_2)^c(x_3)^...^c(x_k), where the exponents are nested from the right. Then a(n) = c(x_k)^...^c(x_3)^c(x_2)^c(x_1).

Examples

			The power tower of 81 is 3^2^2, which turned upside-down is 2^2^3 = 256, so a(81) = 256.
		

Crossrefs

Programs

  • Maple
    f:= proc(n,r) local F,a,y;
         if n = 1 then return 1 fi;
         F:= ifactors(n)[2];
         y:= igcd(seq(t[2],t=F));
         if y = 1 then return n^r fi;
         a:= mul(t[1]^(t[2]/y),t=F);
         procname(y,a^r)
    end proc:
    seq(f(n,1),n=1..100); # Robert Israel, May 13 2018
  • Mathematica
    tow[n_]:=If[n==1,{},With[{g=GCD@@FactorInteger[n][[All,2]]},If[g===1,{n},Prepend[tow[g],n^(1/g)]]]];
    Table[Power@@Reverse[tow[n]],{n,100}]
Previous Showing 21-30 of 46 results. Next