A124500
Number of 1-2-3-4-5 trees with n edges and with thinning limbs. A 1-2-3-4-5 tree is an ordered tree with vertices of outdegree at most 5. A rooted tree with thinning limbs is such that if a node has k children, all its children have at most k children.
Original entry on oeis.org
1, 1, 2, 4, 10, 25, 67, 180, 495, 1375, 3871, 10993, 31493, 90843, 263686, 769466, 2256135, 6643082, 19634705, 58232350, 173242381, 516860717, 1546035258, 4635543843, 13929569399, 41943013047, 126532961332, 382396277940
Offset: 0
-
{a(n)=local(k=5,M=1+x*O(x^n)); for(i=1,k,M=M*sum(j=0,n,binomial(i*j,j)/((i-1)*j+1)*(x^i*M^(i-1))^j)); polcoeff(M,n)} \\ Paul D. Hanna
A124501
Number of 1-2-3-4-5-6 trees with n edges and with thinning limbs. A 1-2-3-4-5-6 tree is an ordered tree with vertices of outdegree at most 6. A rooted tree with thinning limbs is such that if a node has k children, all its children have at most k children.
Original entry on oeis.org
1, 1, 2, 4, 10, 25, 68, 186, 522, 1479, 4246, 12289, 35872, 105411, 311662, 926270, 2765778, 8292296, 24953437, 75338686, 228140842, 692733127, 2108652750, 6433255041, 19668210742, 60247367313, 184879648441, 568281131800
Offset: 0
-
{a(n)=local(k=6,M=1+x*O(x^n)); for(i=1,k,M=M*sum(j=0,n,binomial(i*j,j)/((i-1)*j+1)*(x^i*M^(i-1))^j)); polcoeff(M,n)} \\ Paul D. Hanna
A144700
Generalized (3,-1) Catalan numbers.
Original entry on oeis.org
1, 1, 1, 1, 2, 5, 11, 21, 38, 71, 141, 289, 591, 1195, 2410, 4897, 10051, 20763, 42996, 89139, 185170, 385809, 806349, 1689573, 3547152, 7459715, 15714655, 33161821, 70095642, 148388521, 314562189, 667682057, 1418942341
Offset: 0
-
[(&+[Binomial(n-k,3*k)*Catalan(k): k in [0..Floor(n/4)]]): n in [0..40]]; // G. C. Greubel, Jun 15 2022
-
b[n_, m_]:=a[n, m]=Sum[Binomial[n-k,m*k]*CatalanNumber[k], {k,0,Floor[n/(m+1)]}];
A144700[n_]:= b[n,3]; (* A014137 (m=0), A090344 (m=1), A023431 (m=2) *)
Table[A144700[n], {n, 0, 40}] (* G. C. Greubel, Jun 15 2022 *)
-
[sum(binomial(n-k,3*k)*catalan_number(k) for k in (0..(n//4))) for n in (0..40)] # G. C. Greubel, Jun 15 2022
A257388
Number of 4-Motzkin paths of length n with no level steps at odd level.
Original entry on oeis.org
1, 4, 17, 72, 306, 1304, 5573, 23888, 102702, 442904, 1915978, 8314480, 36195236, 158067312, 692475053, 3043191200, 13415404246, 59321085720, 263100680926, 1170347803440, 5221037429948, 23356788588752, 104772374565666, 471214329434208, 2124649562373708, 9603094073668208
Offset: 0
For n=2 we have 17 paths: H(1)H(1), H(1)H(2), H(1)H(3), H(1)H(4), H(2)H(1), H(2)H(2), H(2)H(3), H(2)H(4), H(3)H(1), H(3)H(2), H(3)H(3), H(3)H(4), H(4)H(1), H(4)H(2), H(4)H(3), H(4)H(4) and UD.
-
CoefficientList[Series[(1-4*x-Sqrt[(1-4*x)*(1-4*x-4*x^2)])/(2*x^2*(1-4*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 22 2015 *)
-
x='x+O('x^50); Vec((1-4*x-sqrt((1-4*x)*(1-4*x-4*x^2)))/(2*x^2*(1-4*x))) \\ G. C. Greubel, Apr 08 2017
A257389
Number of 3-generalized Motzkin paths of length n with no level steps H=(3,0) at odd level.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 6, 6, 17, 21, 54, 74, 183, 272, 644, 1025, 2342, 3928, 8734, 15264, 33227, 59989, 128484, 238008, 503563, 952038, 1995955, 3835381, 7987092, 15548654, 32223061, 63388488, 130918071, 259724317, 535168956, 1069025128
Offset: 0
For n=6 we have 6 paths: UDUDUD, H3H3, UUDUDD, UUUDDD, UDUUDD and UUDDUD, where H3=(3,0).
-
f:= gfun:-rectoproc({(2 + n)*a(n) + (14 + 4*n)*a(n + 1) + (-10 - 2*n)*a(n + 3) + (-20 - 4*n)*a(n + 4) + (8 + n)*a(n + 6), a(0) = 1, a(1) = 0, a(2) = 1, a(3) = 1, a(4) = 2, a(5) = 2},a(n),remember):
map(f, [$0..100]); # Robert Israel, Nov 04 2019
-
a(n):=sum(((-1)^(n-3*k)+1)*((binomial((n-k)/2,k) )*(binomial(n-3*k,(n-3*k)/2))/((n-3*k+2))),k,0,(n)/3); /* Vladimir Kruchinin, Apr 02 2016 */
A257515
Number of 3-generalized 2-Motzkin paths of length n with no level steps H=(3,0) at odd level.
Original entry on oeis.org
1, 0, 1, 2, 2, 4, 9, 12, 26, 48, 90, 172, 348, 664, 1349, 2680, 5438, 10976, 22510, 45900, 94700, 195032, 404442, 838824, 1748308, 3646368, 7632628, 15994232, 33606168, 70699504, 149050669, 314625264, 665280246, 1408436672, 2986069782, 6337988876
Offset: 0
For n=6 we have 9 paths: UDUDUD, H3H3 (4 options), UUDUDD, UUUDDD, UDUUDD and UUDDUD, where H3=(3,0).
-
CoefficientList[Series[(1-2*x^3-Sqrt[(1-2x^3)*(1-4*x^2-2*x^3)])/(2*x^2*(1-2*x^3)), {x, 0, 30}], x] (* Vaclav Kotesovec, Apr 28 2015 *)
-
a(n):=sum((binomial(2*m,m)/(m+1)*(if mod(n+m,3)=0 then 2^((n-2*m)/3)* binomial((m+n)/3,m) else 0)),m,0,n); /* Vladimir Kruchinin, Mar 07 2016 */
-
seq(n)={Vec((1-2*x^3-sqrt((1-2*x^3)*(1-4*x^2-2*x^3) + O(x^(3+n))))/(2*x^2*(1-2*x^3)))} \\ Andrew Howroyd, May 01 2020
A364588
G.f. satisfies A(x) = 1/(1-x) + x^2*A(x)^4.
Original entry on oeis.org
1, 1, 2, 5, 15, 49, 170, 613, 2275, 8629, 33301, 130333, 516077, 2063685, 8321892, 33803161, 138181521, 568031297, 2346668400, 9737766513, 40569611691, 169632827345, 711611670532, 2994165070045, 12632782541053, 53433933353885, 226540298098019
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(n+k, 3*k)*binomial(4*k,k)/(3*k+1));
A114576
Triangle read by rows: T(n,k) is number of Motzkin paths of length n having k UH's, where U=(1,1), H=(1,0) (0<=k<=floor(n/3)).
Original entry on oeis.org
1, 1, 2, 3, 1, 6, 3, 11, 10, 23, 26, 2, 47, 70, 10, 102, 176, 45, 221, 449, 160, 5, 493, 1121, 539, 35, 1105, 2817, 1680, 196, 2516, 7031, 5082, 868, 14, 5763, 17604, 14856, 3486, 126, 13328, 43996, 42660, 12810, 840, 30995, 110147, 120338, 44640, 4410, 42
Offset: 0
T(4,1)=3 because we have H(UH)D, (UH)DH and (UH)HD, where U=(1,1), H=(1,0), D=(1,-1) (the UH's are shown between parentheses).
Triangle begins:
1;
1;
2;
3,1;
6,3;
11,10;
23,26,2;
47,70,10;
-
G:=(1-z-sqrt(1-2*z-3*z^2-4*z^3*t+4*z^3))/2/z^2/(1-z+t*z): Gser:=simplify(series(G,z=0,20)): P[0]:=1: for n from 1 to 16 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 16 do seq(coeff(t*P[n],t^j),j=1..1+floor(n/3)) od; # yields sequence in triangular form
A118677
Number of Motzkin paths of length n in 3D with no level steps at odd level.
Original entry on oeis.org
1, 2, 6, 18, 60, 202, 718, 2600, 9748, 37270, 146058, 582548, 2367028, 9761890, 40844168, 173001018, 741193056, 3207480526, 14008373662, 61683982696, 273658651700, 1222314257450, 5493414465900, 24828463984518
Offset: 0
A337187
a(n) = 1 + Sum_{k=0..n-2} binomial(n-2,k) * a(k) * a(n-k-2).
Original entry on oeis.org
1, 1, 2, 3, 7, 19, 63, 229, 955, 4407, 22445, 124249, 746003, 4821287, 33394193, 246652725, 1935828995, 16086138151, 141100295557, 1302780182449, 12630092274099, 128275445380247, 1362029496267529, 15090795795916493, 174167341456580947, 2090520625244752407
Offset: 0
-
a[n_] := a[n] = 1 + Sum[Binomial[n - 2, k] a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 25}]
Comments