cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A124500 Number of 1-2-3-4-5 trees with n edges and with thinning limbs. A 1-2-3-4-5 tree is an ordered tree with vertices of outdegree at most 5. A rooted tree with thinning limbs is such that if a node has k children, all its children have at most k children.

Original entry on oeis.org

1, 1, 2, 4, 10, 25, 67, 180, 495, 1375, 3871, 10993, 31493, 90843, 263686, 769466, 2256135, 6643082, 19634705, 58232350, 173242381, 516860717, 1546035258, 4635543843, 13929569399, 41943013047, 126532961332, 382396277940
Offset: 0

Views

Author

Emeric Deutsch and Louis Shapiro, Nov 06 2006

Keywords

Comments

The sequences corresponding to k=2 (A090344), k=3 (A124497), k=4 (A124499), k=5 (this A124500), etc. approach sequence A124344, corresponding to ordered trees with thinning limbs.

Crossrefs

Programs

  • PARI
    {a(n)=local(k=5,M=1+x*O(x^n)); for(i=1,k,M=M*sum(j=0,n,binomial(i*j,j)/((i-1)*j+1)*(x^i*M^(i-1))^j)); polcoeff(M,n)} \\ Paul D. Hanna

Formula

In general, if M[k](z) is the g.f. of the 1-2-...-k trees with thinning limbs and C[k](z)=1+z*{C[k](z)}^k is the g.f. of the k-ary trees, then M[k](z)=M[k-1](z)*C[k](M[k-1]^(k-1)*z^k), M[1](z)=1/(1-z).

A124501 Number of 1-2-3-4-5-6 trees with n edges and with thinning limbs. A 1-2-3-4-5-6 tree is an ordered tree with vertices of outdegree at most 6. A rooted tree with thinning limbs is such that if a node has k children, all its children have at most k children.

Original entry on oeis.org

1, 1, 2, 4, 10, 25, 68, 186, 522, 1479, 4246, 12289, 35872, 105411, 311662, 926270, 2765778, 8292296, 24953437, 75338686, 228140842, 692733127, 2108652750, 6433255041, 19668210742, 60247367313, 184879648441, 568281131800
Offset: 0

Views

Author

Emeric Deutsch and Louis Shapiro, Nov 06 2006

Keywords

Comments

The sequences corresponding to k=2 (A090344), k=3 (A124497), k=4 (A124499), k=5 (A124500), k=6 (this A124501), etc. approach sequence A124344, corresponding to ordered trees with thinning limbs.

Crossrefs

Programs

  • PARI
    {a(n)=local(k=6,M=1+x*O(x^n)); for(i=1,k,M=M*sum(j=0,n,binomial(i*j,j)/((i-1)*j+1)*(x^i*M^(i-1))^j)); polcoeff(M,n)} \\ Paul D. Hanna

Formula

In general, if M[k](z) is the g.f. of the 1-2-...-k trees with thinning limbs and C[k](z)=1+z*{C[k](z)}^k is the g.f. of the k-ary trees, then M[k](z)=M[k-1](z)*C[k](M[k-1]^(k-1)*z^k), M[1](z)=1/(1-z).

A144700 Generalized (3,-1) Catalan numbers.

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 11, 21, 38, 71, 141, 289, 591, 1195, 2410, 4897, 10051, 20763, 42996, 89139, 185170, 385809, 806349, 1689573, 3547152, 7459715, 15714655, 33161821, 70095642, 148388521, 314562189, 667682057, 1418942341
Offset: 0

Views

Author

Paul Barry, Sep 19 2008

Keywords

Comments

Number of lattice paths in the first quadrant from (0,0) to (n,0) using only steps H=(1,0), U=(1,1) and D=(3,-1). Hankel transform has g.f. (1-x^3)/(1+x^4) (A132380 (n+3)).

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n-k,3*k)*Catalan(k): k in [0..Floor(n/4)]]): n in [0..40]]; // G. C. Greubel, Jun 15 2022
    
  • Mathematica
    b[n_, m_]:=a[n, m]=Sum[Binomial[n-k,m*k]*CatalanNumber[k], {k,0,Floor[n/(m+1)]}];
    A144700[n_]:= b[n,3]; (* A014137 (m=0), A090344 (m=1), A023431 (m=2) *)
    Table[A144700[n], {n, 0, 40}] (* G. C. Greubel, Jun 15 2022 *)
  • SageMath
    [sum(binomial(n-k,3*k)*catalan_number(k) for k in (0..(n//4))) for n in (0..40)] # G. C. Greubel, Jun 15 2022

Formula

G.f.: (1/(1-x)) * c(x^4/(1-x)^3), where c(x) is the g.f. of A000108.
a(n) = Sum_{k=0..floor(n/4)} binomial(n-k, 3*k)*A000108(k).
(n+4)*a(n) = 2*(2*n+5)*a(n-1) - 6*(n+1)*a(n-2) + 2*(2*n-1)*a(n-3) +3*(n-2)*a(n-4) - 2*(2*n-7)*a(n-5). - R. J. Mathar, Nov 16 2011
a(n) = b(n, 3), where b(n, m) = Sum_{k=0..floor(n/(m+1))} binomial(n-k, m*k)*A000108(k). - G. C. Greubel, Jun 15 2022

A257388 Number of 4-Motzkin paths of length n with no level steps at odd level.

Original entry on oeis.org

1, 4, 17, 72, 306, 1304, 5573, 23888, 102702, 442904, 1915978, 8314480, 36195236, 158067312, 692475053, 3043191200, 13415404246, 59321085720, 263100680926, 1170347803440, 5221037429948, 23356788588752, 104772374565666, 471214329434208, 2124649562373708, 9603094073668208
Offset: 0

Views

Author

Keywords

Examples

			For n=2 we have 17 paths: H(1)H(1), H(1)H(2), H(1)H(3), H(1)H(4), H(2)H(1), H(2)H(2), H(2)H(3), H(2)H(4), H(3)H(1), H(3)H(2), H(3)H(3), H(3)H(4), H(4)H(1), H(4)H(2), H(4)H(3), H(4)H(4) and UD.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-4*x-Sqrt[(1-4*x)*(1-4*x-4*x^2)])/(2*x^2*(1-4*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 22 2015 *)
  • PARI
    x='x+O('x^50); Vec((1-4*x-sqrt((1-4*x)*(1-4*x-4*x^2)))/(2*x^2*(1-4*x))) \\ G. C. Greubel, Apr 08 2017

Formula

a(n) = Sum_{i=0..floor(n/2)}4^(n-2i)*C(i)*binomial(n-i,i), where C(n) is the n-th Catalan number A000108.
G.f.: (1-4*x-sqrt((1-4*x)*(1-4*x-4*x^2)))/(2*x^2*(1-4*x)).
a(n) ~ sqrt(58+41*sqrt(2)) * 2^(n+1/2) * (1+sqrt(2))^n / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 22 2015
Conjecture: (n+2)*a(n) +8*(-n-1)*a(n-1) +4*(3*n+1)*a(n-2) +8*(2*n-3)*a(n-3)=0. - R. J. Mathar, Sep 24 2016
G.f. A(x) satisfies: A(x) = 1/(1 - 4*x) + x^2 * A(x)^2. - Ilya Gutkovskiy, Jun 30 2020

A257389 Number of 3-generalized Motzkin paths of length n with no level steps H=(3,0) at odd level.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 6, 6, 17, 21, 54, 74, 183, 272, 644, 1025, 2342, 3928, 8734, 15264, 33227, 59989, 128484, 238008, 503563, 952038, 1995955, 3835381, 7987092, 15548654, 32223061, 63388488, 130918071, 259724317, 535168956, 1069025128
Offset: 0

Views

Author

Keywords

Examples

			For n=6 we have 6 paths: UDUDUD, H3H3, UUDUDD, UUUDDD, UDUUDD and UUDDUD, where H3=(3,0).
		

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({(2 + n)*a(n) + (14 + 4*n)*a(n + 1) + (-10 - 2*n)*a(n + 3) + (-20 - 4*n)*a(n + 4) + (8 + n)*a(n + 6), a(0) = 1, a(1) = 0, a(2) = 1, a(3) = 1, a(4) = 2, a(5) = 2},a(n),remember):
    map(f, [$0..100]); # Robert Israel, Nov 04 2019
  • Maxima
    a(n):=sum(((-1)^(n-3*k)+1)*((binomial((n-k)/2,k) )*(binomial(n-3*k,(n-3*k)/2))/((n-3*k+2))),k,0,(n)/3); /* Vladimir Kruchinin, Apr 02 2016 */

Formula

G.f.: (1-x^3-sqrt((1-x^3)*(1-4*x^2-x^3)))/(2*x^2*(1-x^3)).
a(n) = Sum_{k=0..n/3}(((-1)^(n-3*k)+1)*(binomial((n-k)/2,k)*(binomial(n-3*k,(n-3*k)/2))/((n-3*k+2)))). - Vladimir Kruchinin, Apr 02 2016
(2 + n)*a(n) + (14 + 4*n)*a(n + 1) + (-10 - 2*n)*a(n + 3) + (-20 - 4*n)*a(n + 4) + (8 + n)*a(n + 6) = 0. - Robert Israel, Nov 04 2019

A257515 Number of 3-generalized 2-Motzkin paths of length n with no level steps H=(3,0) at odd level.

Original entry on oeis.org

1, 0, 1, 2, 2, 4, 9, 12, 26, 48, 90, 172, 348, 664, 1349, 2680, 5438, 10976, 22510, 45900, 94700, 195032, 404442, 838824, 1748308, 3646368, 7632628, 15994232, 33606168, 70699504, 149050669, 314625264, 665280246, 1408436672, 2986069782, 6337988876
Offset: 0

Views

Author

Keywords

Examples

			For n=6 we have 9 paths: UDUDUD, H3H3 (4 options), UUDUDD, UUUDDD, UDUUDD and UUDDUD, where H3=(3,0).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-2*x^3-Sqrt[(1-2x^3)*(1-4*x^2-2*x^3)])/(2*x^2*(1-2*x^3)), {x, 0, 30}], x] (* Vaclav Kotesovec, Apr 28 2015 *)
  • Maxima
    a(n):=sum((binomial(2*m,m)/(m+1)*(if mod(n+m,3)=0 then 2^((n-2*m)/3)* binomial((m+n)/3,m) else 0)),m,0,n); /* Vladimir Kruchinin, Mar 07 2016 */
    
  • PARI
    seq(n)={Vec((1-2*x^3-sqrt((1-2*x^3)*(1-4*x^2-2*x^3) + O(x^(3+n))))/(2*x^2*(1-2*x^3)))} \\ Andrew Howroyd, May 01 2020

Formula

G.f.: (1-2*x^3-sqrt((1-2x^3)*(1-4*x^2-2*x^3)))/(2*x^2*(1-2*x^3)).
Conjecture: (n+2)*a(n) +(n+1)*a(n-1) +(n+4)*a(n-2) +4*(-2*n+3)*a(n-3) +4*(-6*n+17)*a(n-4) +4*(-3*n+10)*a(n-5) +4*(3*n-11)*a(n-6) +4*(11*n-50)*a(n-7) +20*(n-6)*a(n-8)=0. - R. J. Mathar, Jun 07 2016

Extensions

Terms a(31) and beyond from Andrew Howroyd, May 01 2020

A364588 G.f. satisfies A(x) = 1/(1-x) + x^2*A(x)^4.

Original entry on oeis.org

1, 1, 2, 5, 15, 49, 170, 613, 2275, 8629, 33301, 130333, 516077, 2063685, 8321892, 33803161, 138181521, 568031297, 2346668400, 9737766513, 40569611691, 169632827345, 711611670532, 2994165070045, 12632782541053, 53433933353885, 226540298098019
Offset: 0

Views

Author

Seiichi Manyama, Jul 29 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(n+k, 3*k)*binomial(4*k,k)/(3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n+k,3*k) * binomial(4*k,k) / (3*k+1).

A114576 Triangle read by rows: T(n,k) is number of Motzkin paths of length n having k UH's, where U=(1,1), H=(1,0) (0<=k<=floor(n/3)).

Original entry on oeis.org

1, 1, 2, 3, 1, 6, 3, 11, 10, 23, 26, 2, 47, 70, 10, 102, 176, 45, 221, 449, 160, 5, 493, 1121, 539, 35, 1105, 2817, 1680, 196, 2516, 7031, 5082, 868, 14, 5763, 17604, 14856, 3486, 126, 13328, 43996, 42660, 12810, 840, 30995, 110147, 120338, 44640, 4410, 42
Offset: 0

Views

Author

Emeric Deutsch, Dec 09 2005

Keywords

Comments

Row n contains 1+floor(n/3) terms. Row sums are the Motzkin numbers (A001006). Column 0 yields A090344. Sum(k*T(n,k),k=0..floor(n/3))=A014531(n-2).

Examples

			T(4,1)=3 because we have H(UH)D, (UH)DH and (UH)HD, where U=(1,1), H=(1,0), D=(1,-1) (the UH's are shown between parentheses).
Triangle begins:
1;
1;
2;
3,1;
6,3;
11,10;
23,26,2;
47,70,10;
		

Crossrefs

Programs

  • Maple
    G:=(1-z-sqrt(1-2*z-3*z^2-4*z^3*t+4*z^3))/2/z^2/(1-z+t*z): Gser:=simplify(series(G,z=0,20)): P[0]:=1: for n from 1 to 16 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 16 do seq(coeff(t*P[n],t^j),j=1..1+floor(n/3)) od; # yields sequence in triangular form

Formula

G.f.=[1-z-sqrt(1-2z-3z^2-4tz^3+4z^3)]/[2(1-z+tz)z^2].

A118677 Number of Motzkin paths of length n in 3D with no level steps at odd level.

Original entry on oeis.org

1, 2, 6, 18, 60, 202, 718, 2600, 9748, 37270, 146058, 582548, 2367028, 9761890, 40844168, 173001018, 741193056, 3207480526, 14008373662, 61683982696, 273658651700, 1222314257450, 5493414465900, 24828463984518
Offset: 0

Views

Author

Max Alekseyev, May 19 2006

Keywords

Crossrefs

Cf. A090344.

Formula

EXPCONV of A090344 with itself, i.e. a(n) = sum_{k=0}^n binomial(n,k)*A090344(k)*A090344(n-k)

A337187 a(n) = 1 + Sum_{k=0..n-2} binomial(n-2,k) * a(k) * a(n-k-2).

Original entry on oeis.org

1, 1, 2, 3, 7, 19, 63, 229, 955, 4407, 22445, 124249, 746003, 4821287, 33394193, 246652725, 1935828995, 16086138151, 141100295557, 1302780182449, 12630092274099, 128275445380247, 1362029496267529, 15090795795916493, 174167341456580947, 2090520625244752407
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 29 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + Sum[Binomial[n - 2, k] a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 25}]

Formula

E.g.f. A(x) satisfies: A''(x) = exp(x) + A(x)^2.
Previous Showing 11-20 of 20 results.