cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A352373 a(n) = [x^n] ( 1/((1 - x)^2*(1 - x^2)) )^n for n >= 1.

Original entry on oeis.org

2, 12, 74, 484, 3252, 22260, 154352, 1080612, 7621526, 54071512, 385454940, 2758690636, 19810063392, 142662737376, 1029931873824, 7451492628260, 54013574117106, 392188079586468, 2851934621212598, 20766924805302984, 151403389181347160, 1105047483656041080
Offset: 1

Views

Author

Peter Bala, Mar 14 2022

Keywords

Comments

Suppose n identical objects are distributed in 3*n labeled baskets, 2*n colored white and n colored black. White baskets can contain any number of objects (or be empty), while black baskets must contain an even number of objects (or be empty). a(n) is the number of distinct possible distributions.
Number of nonnegative integer solutions to n = x_1 + x_2 + ... + x_(2*n) + 2*y_1 + 2*y_2 + ... + 2*y_n.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k.
Calculation suggests that, in fact, stronger congruences may hold.
Conjecture: the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and positive integers n and k.
More generally, let r and s be integers and define a sequence (a(r,s;n))n>=1 by a(r,s;n) = [x^n] ( (1 + x)^r * (1 - x)^s )^n.
Conjecture: for each r and s the above supercongruences hold for the sequence (a(r,s;n))n>=1.
The present sequence is the case r = -1 and s = -3. Other cases include A000984 (r = 2, s = 0), A001700 with offset 1 (r = 0, s = -1), A002003 (r = 1, s = -1), A091527 (r = 3, s = -1), A119259 (r = 2, s = -1), A156894 (r = 1, s = -2), A165817 (r = 0, s = -2), A234839 (r = 1, s = 2), A348410 (r = -1, s = -2) and A351857 (r = -2, s = -4).

Examples

			n = 2: 12 distributions of 2 identical objects in 4 white and 2 black baskets
             White         Black
   1)   (0) (0) (0) (0)   [2] [0]
   2)   (0) (0) (0) (0)   [0] [2]
   3)   (2) (0) (0) (0)   [0] [0]
   4)   (0) (2) (0) (0)   [0] [0]
   5)   (0) (0) (2) (0)   [0] [0]
   6)   (0) (0) (0) (2)   [0] [0]
   7)   (1) (1) (0) (0)   [0] [0]
   8)   (1) (0) (1) (0)   [0] [0]
   9)   (1) (0) (0) (1)   [0] [0]
  10)   (0) (1) (1) (0)   [0] [0]
  11)   (0) (1) (0) (1)   [0] [0]
  12)   (0) (0) (1) (1)   [0] [0]
Examples of supercongruences:
a(7) - a(1) = 154352 - 2 = 2*(3^2)*(5^2)*(7^3) == 0 (mod 7^3);
a(2*11) - a(2) = 1105047483656041080 - 12 = (2^2)*3*(11^3)*13*101*103*2441* 209581 == 0 (mod 11^3).
		

References

  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

Crossrefs

Programs

  • Maple
    seq(add( binomial(3*n-2*k-1,n-2*k)*binomial(n+k-1,k), k = 0..floor(n/2)), n = 1..25);
  • Mathematica
    nterms=25;Table[Sum[Binomial[3n-2k-1,n-2k]Binomial[n+k-1,k],{k,0,Floor[n/2]}],{n,nterms}] (* Paolo Xausa, Apr 10 2022 *)

Formula

a(n) = Sum_{k = 0..floor(n/2)} binomial(3*n-2*k-1,n-2*k)*binomial(n+k-1,k).
a(n) = Sum_{k = 0..n} (-1)^k*binomial(4*n-k-1,n-k)*binomial(n+k-1,k).
a(n) = binomial(4*n-1,n)*hypergeom([n, -n], [1-4*n], -1).
48*n*(n-1)*(3*n-1)*(3*n-2)*(93*n^3-434*n^2+668*n-339)*a(n) = 12*(n-1)*(21762*n^6-134199*n^5+323805*n^4-386685*n^3+237728*n^2-70336*n+7680)*a(n-1) + 5*(5*n-9)*(5*n-8)*(5*n-7)*(5*n-6)*(93*n^3-155*n^2+79*n-12)*a(n-2) with a(1) = 2 and a(2) = 12.
The o.g.f. A(x) = 2*x + 12*x^2 + 74*x^3 + ... is the diagonal of the bivariate rational function x*t/(1 - t/((1 - x)^2*(1 - x^2))) and hence is an algebraic function over Q(x) by Stanley 1999, Theorem 6.33, p. 197.
A(x) = x*d/dx(log(F(x))), where F(x) = (1/x)*Series_Reversion( x*(1 - x)^2*(1 - x^2) ).
a(n) ~ sqrt(4 + sqrt(6)) * (13/4 + 31*sqrt(6)/18)^n / (2*sqrt(5*Pi*n)). - Vaclav Kotesovec, Mar 15 2022

A244039 a(n) = 2^(2*n-1) * ( binomial(3*n/2,n) + binomial((3*n-1)/2,n) ).

Original entry on oeis.org

1, 5, 39, 338, 3075, 28770, 274134, 2645844, 25781283, 253068530, 2498678754, 24788450076, 246889978062, 2467197059124, 24725226928140, 248396412496488, 2500825206700323, 25225687837101330, 254877697946626410, 2579123090162503500, 26133512970919973850, 265126176290618366460
Offset: 0

Views

Author

N. J. A. Sloane, Jun 28 2014

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

Crossrefs

Programs

  • Magma
    [Round(2^(2*n-1)*( Gamma(3*n/2+1)/Gamma(n/2+1) + Gamma((3*n+1)/2)/Gamma((n+1)/2) )/Factorial(n)): n in [0..25]]; // G. C. Greubel, Aug 20 2019
    
  • Maple
    a := n -> 2^(2*n-1)*(binomial(3*n/2,n) + binomial((3*n-1)/2,n));
    seq(a(n), n=0..25);
  • Mathematica
    Table[2^(2n-1)*(Binomial[3n/2, n] + Binomial[(3n-1)/2, n]), {n, 0, 25}] (* Vincenzo Librandi, Jun 29 2014 *)
  • PARI
    a(n) = 2^(2*n-1)*(binomial(3*n/2, n) + binomial((3*n-1)/2, n));
    vector(25, n, n--; a(n)) \\ G. C. Greubel, Aug 20 2019
    
  • Sage
    [2^(2*n-1)*(binomial(3*n/2, n) + binomial((3*n-1)/2, n)) for n in (0..25)] # G. C. Greubel, Aug 20 2019

Formula

From Peter Bala, Mar 04 2022: (Start)
a(n) = [x^n] ( (1 + 2*x)^3/(1 + x) )^n. Cf. A091527.
a(n) = Sum_{k = 0..n} (-1)^k * 2^(n-k) * binomial(3*n,n-k) * binomial(n+k-1,k).
n*(n-1)*(6*n-11)*a(n) = - 18*(n-1)*a(n-1) + 12*(3*n-4)*(3*n-5)*(6*n-5)*a(n-2) with a(0) = 1 and a(1) = 5.
The o.g.f. A(x) = 1 + 5*x + 39*x^2 + 338*x^3 + ... is the diagonal of the bivariate rational function 1/(1 - t*(1 + 2*x)^3/(1 + x)) and hence is an algebraic function over the field of rational functions Q(x) by Stanley 1999, Theorem 6.33, p. 197.
Calculation gives (1 - 108*x^2)*A(x)^3 - (1 + 9*x)*A(x) = x.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. (End)
a(n) = 2^n*binomial(3*n, n)*hypergeom([-n, n], [2*n + 1], 1/2). - Peter Luschny, Mar 07 2022
From Seiichi Manyama, Aug 08 2025: (Start)
a(n) = Sum_{k=0..n} binomial(3*n,k) * binomial(2*n-k,n-k).
a(n) = [x^n] (1+x)^(3*n)/(1-x)^(n+1).
a(n) = [x^n] 1/((1-x)^n * (1-2*x)^(n+1)).
a(n) = Sum_{k=0..n} 2^k * binomial(n+k,k) * binomial(2*n-k-1,n-k). (End)

A370097 a(n) = Sum_{k=0..n} binomial(3*n,k) * binomial(3*n-k-1,n-k).

Original entry on oeis.org

1, 5, 49, 545, 6401, 77505, 956929, 11976193, 151388161, 1928363009, 24712450049, 318255628289, 4115300220929, 53396370030593, 694845537386497, 9064787191660545, 118516719269445633, 1552528215946035201, 20372392543502991361, 267736366910401413121
Offset: 0

Views

Author

Seiichi Manyama, Feb 10 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[2^k*(-1)^(n-k)*Binomial[3*n, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 31 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(3*n, k)*binomial(3*n-k-1, n-k));

Formula

a(n) = [x^n] ( (1+x)^3/(1-x)^2 )^n.
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x*(1-x)^2/(1+x)^3 ). See A365842.
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(3*n,k). - Seiichi Manyama, Jul 31 2025
a(n) ~ 3^(3*n + 1/2) / (5 * sqrt(Pi*n) * 2^(n-1)). - Vaclav Kotesovec, Jul 31 2025
a(n) = Sum_{k=0..n} 2^k * binomial(2*n+k-1,k). - Seiichi Manyama, Aug 01 2025
a(n) = [x^n] 1/((1-x) * (1-2*x)^(2*n)). - Seiichi Manyama, Aug 09 2025

A330843 Square array T(n,k) = [x^n] ((1+x)^(k+1) / (1-x)^(k-1))^n, n>=0, k>=0, read by descending antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 2, -2, 1, 4, 6, 0, 1, 6, 30, 20, 6, 1, 8, 70, 256, 70, 0, 1, 10, 126, 924, 2310, 252, -20, 1, 12, 198, 2240, 12870, 21504, 924, 0, 1, 14, 286, 4420, 41990, 184756, 204204, 3432, 70, 1, 16, 390, 7680, 104006, 811008, 2704156, 1966080, 12870, 0
Offset: 0

Views

Author

Seiichi Manyama, Feb 07 2020

Keywords

Examples

			Square array begins:
    1,   1,     1,      1,      1,       1, ...
    0,   2,     4,      6,      8,      10, ...
   -2,   6,    30,     70,    126,     198, ...
    0,  20,   256,    924,   2240,    4420, ...
    6,  70,  2310,  12870,  41990,  104006, ...
    0, 252, 21504, 184756, 811008, 2521260, ...
		

Crossrefs

Columns k=1..7 give A000984, A091527, A001448, A262732, A211419, A262733, A211421.
Main diagonal is A332231.

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[(k + 1)*n, j] * Binomial[k*n - j - 1, n - j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 05 2021 *)

Formula

T(n,k) = Sum_{j=0..n} binomial((k+1)*n,j) * binomial(k*n-j-1,n-j).
T(n,k) = 1/n! * ((k+1)*n)!/Gamma(1 + (k+1)*n/2) * Gamma(1 + (k-1)*n/2)/((k-1)*n)!.

A370098 a(n) = Sum_{k=0..n} binomial(3*n,k) * binomial(4*n-k-1,n-k).

Original entry on oeis.org

1, 6, 72, 978, 14016, 207006, 3116952, 47568618, 733189632, 11387193846, 177923724072, 2793666465090, 44042615547456, 696708049377294, 11053262513080440, 175800225426741978, 2802193910116429824, 44752001810800994022, 715924864099841086728
Offset: 0

Views

Author

Seiichi Manyama, Feb 10 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(3*n, k)*binomial(4*n-k-1, n-k));

Formula

a(n) = [x^n] ( (1+x)^3/(1-x)^3 )^n.
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x*(1-x)^3/(1+x)^3 ). See A365843.
From Seiichi Manyama, Aug 09 2025: (Start)
a(n) = [x^n] (1-x)^(n-1)/(1-2*x)^(3*n).
a(n) = Sum_{k=0..n} 2^k * binomial(3*n,k) * binomial(n-1,n-k).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(3*n+k-1,k) * binomial(n-1,n-k). (End)

A244469 a(0) = 0, thereafter, a(n) = 2^(2*n-1)*( binomial((3*n-1)/2,n) - binomial(3*n/2, n)/3 ).

Original entry on oeis.org

0, 1, 7, 58, 515, 4746, 44758, 428772, 4154403, 40599130, 399429602, 3950996556, 39255152846, 391466112324, 3916110379020, 39281346256008, 394942611929379, 3978982062756090, 40160256911157610, 405995113593507900, 4110284071450416090, 41666530928566504620, 422876855107176561780
Offset: 0

Views

Author

N. J. A. Sloane, Jun 28 2014

Keywords

Crossrefs

Programs

  • Magma
    [n eq 0 select 0 else Round(2^(2*n-1)*(Gamma((3*n+1)/2)/Gamma((n+1)/2) - Gamma((3*n+2)/2)/(3*Gamma((n+2)/2)))/Factorial(n)): n in [0..30]]; // G. C. Greubel, Apr 17 2019
    
  • Maple
    f4:=n->-(2^(2*n-1)/3)*binomial(3*n/2,n) + 2^(2*n-1)*binomial((3*n-1)/2,n);
    [seq(f4(n),n=1..40)]; # then prepend f4(0)=0.
  • Mathematica
    Join[{0}, Table[-(2^(2 n - 1)/3) Binomial[3 n/2, n] + 2^(2 n - 1) Binomial[(3 n - 1)/2, n], {n, 1, 30}]] (* Vincenzo Librandi, Jun 29 2014 *)
  • PARI
    {a(n) = if(n==0,0, 2^(2*n-1)*(binomial((3*n-1)/2, n) - binomial(3*n/2, n)/3) )}; \\ G. C. Greubel, Apr 17 2019
    
  • Sage
    def a(n):
       if n==0: return 0
       else: return 2^(2*n-1)*(binomial((3*n-1)/2, n) - binomial(3*n/2, n)/3)
    [a(n) for n in (0..30)] # G. C. Greubel, Apr 17 2019

Formula

G.f.: g'(x)/g(x)-1, g(x)=(2*sqrt(9*x+1)*sin(arcsin((54*x^2+27*x+2)/(2*(9*x+1)^(3/2)))/3))/3-1/3. - Vladimir Kruchinin, Apr 14 2019
From Peter Bala, Mar 05 2022: (Start)
a(n) = (1/n)*Sum_{k = 0..n} k*2^(n-k)*binomial(n+k-1,k)*binomial(2*n-k-1,n-k) for n >= 1.
a(n) = [x^n] G(x)^n = [x^n] 1/(1 - x*C(2*x))^n, where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108 and G(x) is the g.f. of A064062.
n*(n-1)*(6*n-7)*a(n) = - 18*(n-1)*a(n-1) + 12*(3*n-5)*(6*n-1)*(3*n-4)*a(n-2) with a(1) = 1 a(2) = 7.
exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + x + 4*x^2 + 23*x^3 + 156*x^4 + ... is the g.f. of A007297.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. (End)

A294454 a(n) = n! * [x^n] exp(2*n*x)*BesselI(0,2*x)^n.

Original entry on oeis.org

1, 2, 20, 324, 7336, 213500, 7593744, 319195800, 15481238224, 850968357228, 52279073479120, 3549850939488392, 263999303861731200, 21340730504572110008, 1863120652816098506432, 174706136370865217610000, 17512175948995988236164000, 1868638289932305589084614220, 211478046685658614366937497296
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 23 2017

Keywords

Comments

The n-th term of the n-fold exponential convolution of A000984 with themselves.

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[2 n x] BesselI[0, 2 x]^n, {x, 0, n}], {n, 0, 18}]

Formula

a(n) ~ c * d^n * n! / sqrt(n), where d = 6.46710510392662827829435747085578126903789467159876086... and c = 0.36028050364743885143298970162021762094091934461095... - Vaclav Kotesovec, May 04 2024

A331969 T(n, k) = [x^(n-k)] 1/(((1 - 2*x)^k)*(1 - x)^(k + 1)). Triangle read by rows, for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 11, 7, 1, 1, 26, 30, 10, 1, 1, 57, 102, 58, 13, 1, 1, 120, 303, 256, 95, 16, 1, 1, 247, 825, 955, 515, 141, 19, 1, 1, 502, 2116, 3178, 2310, 906, 196, 22, 1, 1, 1013, 5200, 9740, 9078, 4746, 1456, 260, 25, 1
Offset: 0

Views

Author

Peter Luschny, Feb 03 2020

Keywords

Comments

The triangle is the matrix inverse of the Riordan square (see A321620) generated by (1 + x - sqrt(1 - 6*x + x^2))/(4*x) (see A172094), where we take the absolute value of the terms.
T(n,k) is the number of evil-avoiding (2413, 3214, 4132, and 4213 avoiding) permutations of length (n+2) that start with 1 and whose inverse has k descents. - Donghyun Kim, Aug 16 2021

Examples

			Triangle starts:
[0] [1]
[1] [1,    1]
[2] [1,    4,    1]
[3] [1,   11,    7,    1]
[4] [1,   26,   30,   10,    1]
[5] [1,   57,  102,   58,   13,    1]
[6] [1,  120,  303,  256,   95,   16,    1]
[7] [1,  247,  825,  955,  515,  141,   19,   1]
[8] [1,  502, 2116, 3178, 2310,  906,  196,  22,  1]
[9] [1, 1013, 5200, 9740, 9078, 4746, 1456, 260, 25, 1]
...
Seen as a square array (the triangle is formed by descending antidiagonals):
1,  1,   1,    1,    1,     1,      1,      1,       1, ... [A000012]
1,  4,  11,   26,   57,   120,    247,    502,    1013, ... [A000295]
1,  7,  30,  102,  303,   825,   2116,   5200,   12381, ... [A045889]
1, 10,  58,  256,  955,  3178,   9740,  28064,   77093, ... [A055583]
1, 13,  95,  515, 2310,  9078,  32354, 106970,  333295, ...
1, 16, 141,  906, 4746, 21504,  87374, 326084, 1136799, ...
1, 19, 196, 1456, 8722, 44758, 204204, 849180, 3275931, ...
		

Crossrefs

Row sums A006012, alternating row sums A118434 with different signs, central column A091527.
T(n, 1) = A000295(n+1) for n >= 1, T(n, 2) = A045889(n-2) for n >= 2, T(n, 3) = A055583(n-3) for n >= 3.
Cf. A172094 (inverse up to sign).

Programs

  • Maple
    gf := k -> 1/(((1-2*x)^k)*(1-x)^(k+1)): ser := k -> series(gf(k), x, 32):
    # Prints the triangle:
    seq(lprint(seq(coeff(ser(k), x, n-k), k=0..n)), n=0..6);
    # Prints the square array:
    seq(lprint(seq(coeff(ser(k), x, n), n=0..8)), k=0..6);
  • Mathematica
    (* The function RiordanSquare is defined in A321620; returns the triangle as a lower triangular matrix. *)
    M := RiordanSquare[(1 + x - Sqrt[1 - 6 x + x^2])/(4 x), 9];
    Abs[#] & /@ Inverse[PadRight[M]]

A386937 a(n) = Sum_{k=0..n} binomial(3*n+1,k) * binomial(2*n-k-1,n-k).

Original entry on oeis.org

1, 5, 38, 325, 2934, 27314, 259356, 2496813, 24281510, 237978598, 2346750900, 23257207714, 231438363324, 2311082461380, 23146003391352, 232402586792061, 2338665721556742, 23579860411878110, 238157209512898500, 2409099858256570710, 24403155769842168660
Offset: 0

Views

Author

Seiichi Manyama, Aug 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(3*n+1, k)*binomial(2*n-k-1, n-k));

Formula

a(n) = [x^n] (1+x)^(3*n+1)/(1-x)^n.
a(n) = [x^n] 1/((1-x)^(n+2) * (1-2*x)^n).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(3*n+1,k) * binomial(2*n-k+1,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(n+k-1,k) * binomial(2*n-k+1,n-k).
D-finite with recurrence n*(n+1)*a(n) +42*n*(n-2)*a(n-1) +12*(-33*n^2+120*n-95)*a(n-2) +72*(-63*n^2+189*n-110)*a(n-3) +3456*(3*n-8)*(3*n-10)*a(n-4)=0. - R. J. Mathar, Aug 19 2025
Previous Showing 11-19 of 19 results.