cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A066191 Numbers k such that the sum of the odd aliquot parts of k divides k.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 11, 12, 13, 16, 17, 19, 23, 24, 29, 31, 32, 37, 41, 43, 47, 48, 53, 56, 59, 61, 64, 67, 71, 73, 79, 83, 89, 96, 97, 101, 103, 107, 109, 112, 113, 120, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 192, 193, 197, 199, 211, 223
Offset: 1

Views

Author

Robert G. Wilson v, Dec 15 2001

Keywords

Examples

			12 is in the sequence because the odd aliquot parts of 12 are {1,3} and their sum divides 12.
		

Crossrefs

Disjoint union of A000040 and A066192.
Cf. A091570.

Programs

  • Maple
    with(numtheory):soa:=proc(n) local div,s,j: div:=convert(divisors(n),list): s:=0: for j from 1 to nops(div)-1 do if div[j] mod 2=1 then s:=s+div[j] else s:=s: fi: od: end: p:=proc(n) if type(n/soa(n),integer)=true then n else fi end: seq(p(n),n=1..240); # Emeric Deutsch, Feb 26 2005
  • Mathematica
    Do[ d = Drop[ Divisors[ n ], -1 ]; l = Length[ d ]; od = 1; k = 2; While[ k <= l, If[ OddQ[ d[ [ k ] ] ], od = od + d[ [ k ] ] ]; k++ ]; If[ IntegerQ[ n/od ], Print[ n ] ], {n, 2, 200} ]
    Select[Range[2, 225], Divisible[#, DivisorSigma[1, #/2^IntegerExponent[#, 2]] - If[OddQ[#], #, 0]] &] (* Amiram Eldar, Apr 27 2025 *)
  • PARI
    { n=0; for (m=2, 10^9, d=divisors(m); s=1; for (i=2, numdiv(m) - 1, if (d[i]%2, s += d[i])); if (s > 0 && m%s == 0, write("b066191.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Feb 05 2010
    
  • PARI
    isok(n) = !(n % sumdiv(n, d, d*(d%2)*(d!=n))); \\ Michel Marcus, Apr 06 2015
    
  • PARI
    isok(k) = if(k == 1, 0, !(k % (sigma(k >> valuation(k, 2)) - if(k%2, k)))); \\ Amiram Eldar, Apr 27 2025

Extensions

More terms from Emeric Deutsch, Feb 26 2005

A066192 Composite numbers k such that the sum of the odd aliquot parts of k divides k.

Original entry on oeis.org

4, 8, 12, 16, 24, 32, 48, 56, 64, 96, 112, 120, 128, 192, 224, 240, 256, 384, 448, 480, 512, 528, 672, 768, 896, 960, 992, 1024, 1056, 1344, 1456, 1536, 1792, 1920, 1984, 2048, 2112, 2160, 2208, 2688, 2912, 3072, 3584, 3840, 3968, 4096, 4224, 4320, 4416
Offset: 1

Views

Author

Robert G. Wilson v, Dec 15 2001

Keywords

Comments

From Amiram Eldar, Apr 27 2025: (Start)
If there is an odd term in this sequence it must be an odd perfect number (A000396). If k is an odd term then d = sigma(k)-k divides k. If d < k then sigma(k) = k + d with d being an aliquot divisor of k which is possible only if k is prime and d = 1. Therefore, d = k and k must be an odd perfect number.
This sequence is infinite because if k is a term then 2*k is also a term. The primitive terms are in A383428. (End)

Crossrefs

Intersection of A002808 and A066191.

Programs

  • Mathematica
    Do[ d = Drop[ Divisors[ n ], -1 ]; l = Length[ d ]; od = 1; k = 2; While[ k <= l, If[ OddQ[ d[ [ k ] ] ], od = od + d[ [ k ] ] ]; k++ ]; If[ !PrimeQ[ n ] && IntegerQ[ n/od ], Print[ n ] ], {n, 2, 10^4} ]
    Select[Range[4500], CompositeQ[#] && Divisible[#, DivisorSigma[1, #/2^IntegerExponent[#, 2]] - If[OddQ[#], #, 0]] &] (* Amiram Eldar, Apr 27 2025 *)
  • PARI
    { n=0; for (m=4, 10^9, if (isprime(m), next); d=divisors(m); s=1; for (i=2, numdiv(m) - 1, if (d[i]%2, s += d[i])); if (s > 0 && m%s == 0, write("b066192.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Feb 05 2010
    
  • PARI
    isok(k) = if(k == 1, 0, !isprime(k) && !(k % (sigma(k >> valuation(k, 2)) - if(k%2, k)))); \\ Amiram Eldar, Apr 27 2025

A091818 Sum of the even proper divisors of 2n. Sum of the even divisors of 2n that are less than 2n.

Original entry on oeis.org

0, 2, 2, 6, 2, 12, 2, 14, 8, 16, 2, 32, 2, 20, 18, 30, 2, 42, 2, 44, 22, 28, 2, 72, 12, 32, 26, 56, 2, 84, 2, 62, 30, 40, 26, 110, 2, 44, 34, 100, 2, 108, 2, 80, 66, 52, 2, 152, 16, 86, 42, 92, 2, 132, 34, 128, 46, 64, 2, 216, 2, 68, 82, 126, 38, 156, 2, 116
Offset: 1

Views

Author

Mohammad K. Azarian, Mar 07 2004

Keywords

Examples

			The sum of the even divisors of 18 that are less than 18 is 8 = 2+6.
		

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[Most[Divisors[2 n]],EvenQ]],{n,70}] (* Harvey P. Dale, Apr 28 2023 *)
  • PARI
    a(n) = sumdiv(2*n, d, !(d%2) * d * (d<2*n)); \\ Michel Marcus, Jan 14 2014
    
  • Python
    from sympy import divisors
    def a(n): return sum(d for d in divisors(2*n) if d%2==0) - 2*n
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Oct 30 2017

Formula

a(n) = A074400(2n) - 2n. - Michel Marcus, Jan 14 2014
a(n) = Sum_{d|2n, d<2n, d even} d. - Wesley Ivan Hurt, Mar 02 2022
a(n) = 2 * A001065(n). - Alois P. Heinz, Mar 02 2022

Extensions

More terms from Michel Marcus, Jan 14 2014

A293901 Sum of proper divisors of n of the form 4k+1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 10, 1, 6, 1, 1, 1, 1, 6, 14, 10, 1, 1, 6, 1, 1, 1, 18, 6, 10, 1, 1, 14, 6, 1, 22, 1, 1, 15, 1, 1, 1, 1, 31, 18, 14, 1, 10, 6, 1, 1, 30, 1, 6, 1, 1, 31, 1, 19, 34, 1, 18, 1, 6, 1, 10, 1, 38, 31, 1, 1, 14, 1, 6, 10, 42, 1, 22, 23, 1, 30, 1, 1, 60, 14, 1, 1, 1, 6, 1, 1, 50, 43, 31, 1, 18, 1, 14, 27
Offset: 1

Views

Author

Antti Karttunen, Oct 19 2017

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, # < n && Mod[#, 4] == 1 &]; Array[a, 100] (* Amiram Eldar, Nov 27 2023 *)
  • PARI
    A293901(n) = sumdiv(n,d,(d
    				

Formula

a(n) = Sum_{d|n, d
a(n) = A091570(n) - A293903(n).
G.f.: Sum_{k>=1} (4*k-3) * x^(8*k-6) / (1 - x^(4*k-3)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/48 - 1/8 = 0.0806167... . - Amiram Eldar, Nov 27 2023

A293903 Sum of proper divisors of n of the form 4k+3.

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 7, 3, 0, 0, 3, 0, 0, 10, 11, 0, 3, 0, 0, 3, 7, 0, 18, 0, 0, 14, 0, 7, 3, 0, 19, 3, 0, 0, 10, 0, 11, 18, 23, 0, 3, 7, 0, 3, 0, 0, 30, 11, 7, 22, 0, 0, 18, 0, 31, 10, 0, 0, 14, 0, 0, 26, 42, 0, 3, 0, 0, 18, 19, 18, 42, 0, 0, 30, 0, 0, 10, 0, 43, 3, 11, 0, 18, 7, 23, 34, 47, 19, 3, 0, 7, 14, 0, 0, 54, 0, 0, 60
Offset: 1

Author

Antti Karttunen, Oct 19 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#, # &, Mod[#, 4] == 3 &] - Boole[Mod[#, 4] == 3] # &, 105] (* Michael De Vlieger, Oct 23 2017 *)
  • PARI
    A293903(n) = sumdiv(n,d,(d
    				

Formula

a(n) = Sum_{d|n, d
a(n) = A091570(n) - A293901(n).
G.f.: Sum_{k>=1} (4*k-1) * x^(8*k-2) / (1 - x^(4*k-1)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/48 - 1/8 = 0.0806167... . - Amiram Eldar, Nov 27 2023

A383428 Primitive terms in A066192: number k such that k is a term of A066192 and k/2 is not.

Original entry on oeis.org

4, 12, 56, 120, 528, 672, 992, 1456, 2160, 2208, 6720, 9024, 9120, 11904, 13104, 16256, 17472, 24800, 29568, 55104, 55552, 73440, 90816, 95040, 119040, 120960, 121024, 123648, 131040, 146688, 151680, 174720, 195072, 223104, 297600, 397440, 399616, 445536, 505344
Offset: 1

Author

Amiram Eldar, Apr 27 2025

Keywords

Comments

If a(1) = 1 instead of 4, then this will be the sequence of primitive terms in A069519.
If k is a term then 2^m * k is a term in A066192 for all m >= 0.
If there is an odd term in this sequence it must be an odd perfect number (A000396). See the comments in A066192.
Except for 4, numbers k such that A091570(k) | k and k/A091570(k) is odd.

Crossrefs

Subsequence of A066191 and A066192.

Programs

  • Mathematica
    q[n_] := Module[{s = DivisorSigma[1, n/2^IntegerExponent[n, 2]] - If[OddQ[n], n, 0]}, Divisible[n, s] && OddQ[n/s]]; Select[Range[550000], # == 4 || (CompositeQ[#] && q[#]) &]
  • PARI
    isok(k) = if(k == 1 || isprime(k), 0, if(k == 4, 1, my(s = sigma(k >> valuation(k, 2)) - if(k%2, k)); !(k % s) && (k/s) % 2));

A385349 Product of odd proper divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 3, 5, 1, 3, 1, 7, 15, 1, 1, 27, 1, 5, 21, 11, 1, 3, 5, 13, 27, 7, 1, 225, 1, 1, 33, 17, 35, 27, 1, 19, 39, 5, 1, 441, 1, 11, 2025, 23, 1, 3, 7, 125, 51, 13, 1, 729, 55, 7, 57, 29, 1, 225, 1, 31, 3969, 1, 65, 1089, 1, 17, 69, 1225, 1, 27, 1, 37, 5625
Offset: 1

Author

Ilya Gutkovskiy, Jun 26 2025

Keywords

Crossrefs

Cf. A007955, A007956, A091570 (similar for sum), A136655, A385350 (fixed points).

Programs

  • Maple
    a:= n-> mul(`if`(d::odd, d, 1), d=numtheory[divisors](n) minus {n}):
    seq(a(n), n=1..75);  # Alois P. Heinz, Jun 27 2025
  • Mathematica
    a[n_] := Times @@ Select[Divisors[n], # < n && OddQ[#] &]; Table[a[n], {n, 75}]
  • PARI
    a(n) = my(m = n >> valuation(n,2), d = numdiv(m)); if(d % 2, sqrtint(m)^d, m^(d/2)) / if(m < n, 1, n); \\ Amiram Eldar, Jun 27 2025
    
  • Python
    from math import isqrt
    from sympy import divisor_count
    def A385349(n):
        d = divisor_count(m:=n>>(~n&n-1).bit_length())
        k = isqrt(m)**d if d&1 else m**(d>>1)
        return k//n if n&1 else k # Chai Wah Wu, Jun 27 2025

Formula

a(n) = Product_{d|n, d < n, d odd} d.
Previous Showing 11-17 of 17 results.