A039717
Row sums of convolution triangle A030523.
Original entry on oeis.org
1, 4, 15, 55, 200, 725, 2625, 9500, 34375, 124375, 450000, 1628125, 5890625, 21312500, 77109375, 278984375, 1009375000, 3651953125, 13212890625, 47804687500, 172958984375, 625771484375, 2264062500000, 8191455078125
Offset: 1
-
CoefficientList[Series[(1 - x) / (1 - 5 x + 5 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 10 2014 *)
-
Vec(x*(1-x)/(1-5*x+5*x^2) + O(x^40)) \\ Altug Alkan, Nov 20 2015
A104597
Triangle T read by rows: inverse of Motzkin triangle A097609.
Original entry on oeis.org
1, 0, 1, -1, 0, 1, -1, -2, 0, 1, 0, -2, -3, 0, 1, 1, 1, -3, -4, 0, 1, 1, 4, 3, -4, -5, 0, 1, 0, 3, 9, 6, -5, -6, 0, 1, -1, -2, 5, 16, 10, -6, -7, 0, 1, -1, -6, -9, 6, 25, 15, -7, -8, 0, 1, 0, -4, -18, -24, 5, 36, 21, -8, -9, 0, 1, 1, 3, -7, -39, -50, 1, 49, 28, -9, -10, 0, 1, 1, 8
Offset: 0
1
0,1
-1,0,1
-1,-2,0,1
0,-2,-3,0,1
1,1,-3,-4,0,1
1,4,3,-4,-5,0,1
0,3,9,6,-5,-6,0,1
-1,-2,5,16,10,-6,-7,0,1
-1,-6,-9,6,25,15,-7,-8,0,1
- D. Merlini, R. Sprugnoli and M. C. Verri, An algebra for proper generating trees, Mathematics and Computer Science, Part of the series Trends in Mathematics pp 127-139, 2000. [alternative link]
- D. Merlini, R. Sprugnoli and M. C. Verri, An algebra for proper generating trees, Colloquium on Mathematics and Computer Science, Versailles, September 2000.
Row sums are
A009116 with different signs.
-
# Uses function InvPMatrix from A357585. Adds column 1, 0, 0, ... to the left.
InvPMatrix(10, n -> A005043(n-1)); # Peter Luschny, Oct 09 2022
-
T(n,m):=sum(binomial(m,j)*sum(binomial(k,n-k)*(-1)^(n-k)*binomial(k+j-1,j-1),k,0,n)*(-1)^(m-j),j,0,m); /* Vladimir Kruchinin, Apr 08 2011 */
A210736
Expansion of (1 + sqrt( (1 + 2*x) / (1 - 2*x))) / 2 in powers of x.
Original entry on oeis.org
1, 1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252, 462, 924, 1716, 3432, 6435, 12870, 24310, 48620, 92378, 184756, 352716, 705432, 1352078, 2704156, 5200300, 10400600, 20058300, 40116600, 77558760, 155117520, 300540195, 601080390, 1166803110, 2333606220, 4537567650
Offset: 0
G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 10*x^6 + 20*x^7 + 35*x^8 + 70*x^9 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Jean-Luc Baril and José L. Ramírez, Knight's paths towards Catalan numbers, Univ. Bourgogne Franche-Comté (2022).
- Paul Barry, d-orthogonal polynomials, Fuss-Catalan matrices and lattice paths, arXiv:2505.16718 [math.CO], 2025. See p. 25.
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, 2009; page 77.
-
nn=36; d=(1-(1-4x^2)^(1/2))/(2x^2);CoefficientList[Series[1/(1-x d),{x,0,nn}],x] (* Geoffrey Critzer, Jul 08 2013 *)
CoefficientList[Series[2 x / (-1 + 2 x + Sqrt[1 - 4 x^2]), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 10 2014 *)
-
{a(n) = if( n<1, n==0, binomial( n - 1, (n - 1)\2))};
-
{a(n) = polcoeff( (1 + sqrt( (1 + 2*x) / (1 - 2*x) + x * O(x^n))) / 2, n)};
A124644
Triangle read by rows. T(n, k) = binomial(n, k) * CatalanNumber(n - k).
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 5, 6, 3, 1, 14, 20, 12, 4, 1, 42, 70, 50, 20, 5, 1, 132, 252, 210, 100, 30, 6, 1, 429, 924, 882, 490, 175, 42, 7, 1, 1430, 3432, 3696, 2352, 980, 280, 56, 8, 1, 4862, 12870, 15444, 11088, 5292, 1764, 420, 72, 9, 1, 16796, 48620, 64350, 51480, 27720
Offset: 0
Farkas Janos Smile (smile_farkasjanos(AT)yahoo.com.au), Dec 21 2006
From _Paul Barry_, Jan 28 2009: (Start)
Triangle begins
1,
1, 1,
2, 2, 1,
5, 6, 3, 1,
14, 20, 12, 4, 1,
42, 70, 50, 20, 5, 1 (End)
-
m:=n->binomial(2*n, n)/(n+1): T:=proc(n, k) if k<=n then binomial(n, k)*m(n-k) else 0 fi end: for n from 0 to 10 do seq(T(n, k), k=0..n) od;
-
Table[Binomial[n, #] Binomial[2 #, #]/(# + 1) &[n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* or *)
Table[Abs[(-1)^k*CatalanNumber[#] Pochhammer[-n, #]/#!] &[n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 17 2017 *)
-
def A124644(n,k):
return (-1)^(n-k)*catalan_number(n-k)*rising_factorial(-n,n-k)/factorial(n-k)
for n in range(7): [A124644(n,k) for k in (0..n)] # Peter Luschny, Feb 05 2015
Name brought in line with the Maple program by
Peter Luschny, Jun 21 2023
A211357
Triangle read by rows: T(n,k) is the number of noncrossing partitions up to rotation of an n-set that contain k singleton blocks.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 2, 0, 1, 2, 3, 2, 2, 0, 1, 5, 6, 9, 4, 3, 0, 1, 6, 15, 18, 15, 5, 3, 0, 1, 15, 36, 56, 42, 29, 7, 4, 0, 1, 28, 91, 144, 142, 84, 42, 10, 4, 0, 1, 67, 232, 419, 432, 322, 152, 66, 12, 5, 0, 1, 145, 603, 1160, 1365, 1080, 630, 252, 90, 15, 5, 0, 1
Offset: 0
From _Andrew Howroyd_, Nov 16 2017: (Start)
Triangle begins: (n >= 0, 0 <= k <= n)
1;
0, 1;
1, 0, 1;
1, 1, 0, 1;
2, 1, 2, 0, 1;
2, 3, 2, 2, 0, 1;
5, 6, 9, 4, 3, 0, 1;
6, 15, 18, 15, 5, 3, 0, 1;
15, 36, 56, 42, 29, 7, 4, 0, 1;
28, 91, 144, 142, 84, 42, 10, 4, 0, 1;
67, 232, 419, 432, 322, 152, 66, 12, 5, 0, 1;
(End)
Cf.
A091867 (noncrossing partitions of an n-set with k singleton blocks),
A211359 (up to rotations and reflections).
-
a91867[n_, k_] := If[k == n, 1, (Binomial[n + 1, k]/(n + 1)) Sum[Binomial[n + 1 - k, j] Binomial[n - k - j - 1, j - 1], {j, 1, (n - k)/2}]];
a2426[n_] := Sum[Binomial[n, 2*k]*Binomial[2*k, k], {k, 0, Floor[n/2]}];
a171128[n_, k_] := Binomial[n, k]*a2426[n - k];
T[0, 0] = 1;
T[n_, k_] := (1/n)*(a91867[n, k] - a171128[n, k] + Sum[EulerPhi[d]* a171128[n/d, k/d], {d, Divisors[GCD[n, k]]}]);
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 03 2018, after Andrew Howroyd *)
-
g(x,y) = {1/sqrt((1 - (1 + y)*x)^2 - 4*x^2) - 1}
S(n)={my(A=(1-sqrt(1-4*x/(1-(y-1)*x) + O(x^(n+2))))/(2*x)-1); Vec(1+intformal((A + sum(k=2, n, eulerphi(k)*g(x^k + O(x*x^n), y^k)))/x))}
my(v=S(10)); for(n=1, #v, my(p=v[n]); for(k=0, n-1, print1(polcoeff(p,k), ", ")); print) \\ Andrew Howroyd, Nov 16 2017
Comments