cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 70 results. Next

A235479 Primes whose base-2 representation also is the base-9 representation of a prime.

Original entry on oeis.org

11, 13, 19, 41, 79, 109, 137, 151, 167, 191, 193, 199, 227, 239, 271, 307, 313, 421, 431, 433, 457, 487, 491, 521, 563, 613, 617, 659, 677, 709, 727, 757, 929, 947, 1009, 1033, 1051, 1249, 1483, 1693, 1697, 1709, 1721, 1831, 1951, 1979, 1987, 1993
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.
For further motivation and cross-references, see sequence A235265 which is the main entry for this whole family of sequences.
A subsequence of A027697, A050150, A062090 and A176620.

Examples

			11 = 1011_2 and 1011_9 = 6571 are both prime, so 11 is a term.
		

Crossrefs

Cf. A235466A077723, A235266, A152079, A235475 - A235478, A065720A036952, A065721 - A065727, A089971A020449, A089981, A090707 - A091924, A235394, A235395, A235461 - A235482. See the LINK for further cross-references.

Programs

  • PARI
    is(p,b=9)=isprime(vector(#d=binary(p),i,b^(#d-i))*d~)&&isprime(p)

A267490 Primes whose base-8 representation is a perfect square in base 10.

Original entry on oeis.org

149, 241, 661, 1409, 2593, 3733, 6257, 7793, 15313, 23189, 25601, 26113, 30497, 34337, 44053, 49057, 78577, 92821, 95009, 108529, 115861, 132757, 162257, 178417, 183377, 223381, 235541, 242197, 266261, 327317, 345749, 426389, 525461, 693397, 719893, 729713, 805397, 814081, 903841
Offset: 1

Views

Author

Christopher Cormier, Jan 16 2016

Keywords

Comments

Subsequence of primes in A267768. - M. F. Hasler, Jan 20 2016

Examples

			a(1) = 149 because 149 is 225 in base 8, and 225 is 15^2 in base 10.
		

Crossrefs

For primes which are primes in other bases, see A235265, A235266, A152079, A235461 - A235482, A065720A036952, A065721 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924.

Programs

  • Magma
    [n:n in PrimesUpTo(1000000)| IsSquare(Seqint(Intseq(n,8)))]; // Marius A. Burtea, Jun 30 2019
  • Mathematica
    Select[Prime@ Range[10^5], IntegerQ@ Sqrt@ FromDigits@ IntegerDigits[#, 8] &] (* Michael De Vlieger, Jan 16 2016 *)
  • PARI
    listp(nn) = {forprime(p=1, nn, d = digits(p, 8); pd = Pol(d); if (issquare(subst(pd, x, 10)), print1(p, ", ")););} \\ Michel Marcus, Jan 16 2016
    
  • PARI
    is(n,b=8,c=10)={issquare(subst(Pol(digits(n,b)),x,c))&&isprime(n)} \\ M. F. Hasler, Jan 20 2016
    
  • Python
    from sympy import isprime
    A267490_list = [int(s,8) for s in (str(i**2) for i in range(10**6)) if max(s) < '8' and isprime(int(s,8))] # Chai Wah Wu, Jan 20 2016
    

A065726 Primes p whose base-8 expansion is also the decimal expansion of a prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 19, 31, 43, 59, 67, 71, 89, 137, 151, 179, 191, 199, 223, 251, 257, 281, 283, 307, 311, 337, 353, 359, 367, 383, 409, 419, 433, 443, 449, 523, 563, 617, 619, 641, 659, 727, 787, 809, 811, 857, 887, 907, 919, 947, 977, 1033, 1039, 1097, 1123
Offset: 1

Views

Author

Patrick De Geest, Nov 15 2001

Keywords

Comments

In general rebase notation (Marc LeBrun): p8 = (8) [p] (10).

Examples

			E.g., 787_10 = 1423_8 is prime, and so is 1423_10.
		

Crossrefs

Primes in A036963.
Cf. A065720 up to A065727, A065361.
Cf. A090707 - A091924, A235461 - A235482. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[ Range[2500], PrimeQ[ # ] && PrimeQ[ FromDigits[ IntegerDigits[ #, 8]]] & ]
  • PARI
    is(p, b=10, c=8)=isprime(vector(#d=digits(p, c), i, b^(#d-i))*d~)&&isprime(p) \\ This code can be used for other bases b, c when b>c. See A235265 for code also valid for bM. F. Hasler, Jan 12 2014

Extensions

Definition clarified by M. F. Hasler, Jan 12 2014

A090862 Smallest b > 10 such that the decimal representation of the n-th prime is not a prime in base b representation.

Original entry on oeis.org

11, 11, 11, 11, 11, 12, 11, 11, 11, 12, 11, 11, 11, 14, 13, 11, 11, 11, 11, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 11, 11, 12, 11, 11, 11, 11, 11, 11, 12, 12, 11, 11, 12, 11, 11, 11, 11, 11, 11, 12, 11, 11, 11, 12, 11, 11
Offset: 5

Views

Author

Reinhard Zumkeller, Feb 12 2004

Keywords

Examples

			For n = 10: A000040(10) = 29 in base 11 2*11^1 + 9*11^0 = 31 is prime, 29 in base 12 is 2*12^1 + 9*12^0 = 33 = 3*11 is not prime, therefore a(10) = 12.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{d = IntegerDigits[Prime[n]], b = 11}, While[PrimeQ[FromDigits[d, b]], b++]; b]; Array[a, 100, 5] (* Amiram Eldar, Mar 28 2025 *)

Formula

a(A091922(n)) = n and a(m) <> n for m < A091922(n).

A235110 Primes whose base-10 representation also represents a prime in base 13.

Original entry on oeis.org

2, 3, 5, 7, 23, 41, 47, 61, 83, 89, 157, 173, 179, 197, 223, 229, 263, 281, 311, 313, 331, 373, 379, 397, 401, 463, 467, 487, 571, 599, 607, 643, 661, 739, 751, 773, 797, 809, 823, 863, 883, 919, 937, 971, 977
Offset: 1

Views

Author

M. F. Hasler, Jan 03 2014

Keywords

Comments

See A090712 for a similar sequence whose definition works "in the opposite direction".

Examples

			The decimal representation of prime 23, considered as a number written in base 13, stands for 2*13+3 = 29, which is also prime, therefore 23 is in the sequence.
		

Crossrefs

Cf. A235110, A235144 and other sequences in the range A090707 - A091924.

Programs

  • Mathematica
    Select[Prime[Range[5000]],PrimeQ[FromDigits[IntegerDigits[#],13]]&] (* Zak Seidov, Aug 31 2015 *)
  • PARI
    is_A235110(p, b=13)={my(d=digits(p)); isprime(vector(#d, i, b^(#d-i))*d~)&&isprime(p)}

A235474 Primes whose base-4 representation is also the base-5 representation of a prime.

Original entry on oeis.org

2, 3, 11, 29, 31, 41, 101, 109, 139, 149, 151, 181, 199, 229, 239, 251, 269, 271, 281, 389, 409, 491, 509, 541, 547, 661, 751, 887, 911, 947, 991, 1021, 1051, 1061, 1069, 1091, 1151, 1279, 1289, 1381, 1409, 1471, 1549, 1709, 1759, 1801, 1999
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.
For further motivation and cross-references, see sequence A235265 which is the main entry for this whole family of sequences.

Examples

			11 = 23_4 and 23_5 = 13 are both prime, so 11 is a term.
		

Crossrefs

Cf. A235266, A235473, A152079, A235475 - A235479, A065720A036952, A065721 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924, A235461 - A235482. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime[Range[400]],PrimeQ[FromDigits[IntegerDigits[#,4],5]]&] (* Harvey P. Dale, Dec 31 2017 *)
  • PARI
    is(p,b=5,c=4)=isprime(vector(#d=digits(p,c),i,b^(#d-i))*d~)&&isprime(p) \\ Note: This code is only valid for b > c.

A235477 Primes whose base-2 representation also is the base-7 representation of a prime.

Original entry on oeis.org

2, 31, 47, 59, 103, 107, 173, 179, 181, 199, 211, 227, 229, 233, 367, 409, 443, 463, 487, 701, 743, 757, 823, 827, 877, 911, 919, 967, 1009, 1123, 1163, 1291, 1321, 1367, 1373, 1447, 1493, 1571, 1583, 1597, 1609, 1627, 1657, 1669, 1721, 1831, 1933, 1987
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.
For further motivation and cross-references, see sequence A235265 which is the main entry for this whole family of sequences.
A subsequence of A027697, A015919, A197636 (conjectural).

Examples

			31 = 11111_2 and 11111_7 = 2801 are both prime, so 31 is a term.
		

Crossrefs

Cf. A235464A077721, A235475, A152079, A235266, A065720A036952, A065721 - A065727, A089971A020449, A089981, A090707 - A091924, A235394, A235395, A235461 - A235482. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime[Range[300]],PrimeQ[FromDigits[IntegerDigits[#,2],7]]&] (* Harvey P. Dale, May 08 2021 *)
  • PARI
    is(p,b=7)=isprime(vector(#d=binary(p),i,b^(#d-i))*d~)&&isprime(p)

A235635 Primes whose base-5 representation is also the base-7 representation of a prime.

Original entry on oeis.org

2, 3, 5, 13, 17, 23, 29, 41, 43, 47, 53, 59, 61, 71, 79, 83, 101, 103, 137, 157, 163, 181, 191, 223, 227, 239, 281, 347, 379, 383, 419, 443, 463, 479, 547, 563, 571, 593, 641, 691, 701, 743, 757, 811, 839, 863, 877, 967, 997, 1049, 1051, 1087, 1097, 1109, 1151, 1171, 1217, 1249, 1259, 1283
Offset: 1

Views

Author

M. F. Hasler, Jan 13 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.

Examples

			17 = 32_5 and 32_7 = 23 are both prime, so 17 is a term.
		

Crossrefs

Cf. A235627, A235265, A235266, A152079, A235461 - A235482, A065720 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924, A235615 - A235639. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime@Range@500, PrimeQ@FromDigits[IntegerDigits[#, 5], 7] &] (* Giovanni Resta, Sep 12 2019 *)
  • PARI
    is(p,b=7,c=5)=isprime(vector(#d=digits(p,c),i,b^(#d-i))*d~)&&isprime(p) \\ Note: This code is only valid for b > c.

A090712 Primes whose base-13 expansion is a (valid) decimal expansion of a prime.

Original entry on oeis.org

2, 3, 5, 7, 29, 53, 59, 79, 107, 113, 241, 263, 269, 293, 367, 373, 419, 443, 521, 523, 547, 601, 607, 631, 677, 757, 761, 787, 937, 971, 1021, 1069, 1093, 1231, 1249, 1277, 1307, 1361, 1381, 1433, 1459, 1543, 1567, 1613, 1619, 2213, 2237, 2239, 2447, 2477
Offset: 1

Views

Author

Cino Hilliard, Jan 18 2004

Keywords

Comments

See A235110 for a similar sequence whose definition works "in the opposite direction": Actually, the base-13 representation of the terms here. - M. F. Hasler, Jan 03 2014

Examples

			The prime p = 53 is written 41 in base 13, and 41 is again (the base 10 representation of) a prime. Therefore p = 53 is a term of this sequence. [Rephrased by _M. F. Hasler_, Jan 03 2014]
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Module[{c13=FromDigits[IntegerDigits[n],13]},If[PrimeQ[c13], c13,0]]; Select[f/@Prime[Range[500]],#!=0&] (* Harvey P. Dale, Jun 20 2011 *)
  • PARI
    is_A090712(p)=vecmax(d=digits(p,13))<10&&isprime(vector(#d,i,10^(#d-i))*d~)&&isprime(p) \\ M. F. Hasler, Jan 05 2014

Extensions

Edited by N. J. A. Sloane, Feb 07 2007, and by M. F. Hasler, Jan 05 2014

A091923 Primes whose decimal representations interpreted in base 11 are not prime.

Original entry on oeis.org

11, 13, 17, 19, 23, 31, 37, 41, 47, 53, 59, 71, 73, 79, 83, 97, 101, 103, 107, 109, 113, 127, 131, 137, 149, 151, 157, 163, 167, 173, 179, 181, 191, 211, 223, 229, 233, 239, 241, 251, 257, 271, 277, 283, 293, 307, 311, 313, 317, 337, 347, 349, 359, 367, 383
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 13 2004

Keywords

Comments

A090862(A049084(a(n))) = 11.

Examples

			A000040(9)=23 in base 11 is 2*11^1 + 3*11^0 = 25 = 5^2, therefore 29 is a term.
		

Crossrefs

Cf. A091924.

Programs

  • Magma
    [n:n in PrimesUpTo(400)| not IsPrime(Seqint(Intseq(n), 11))]; // Marius A. Burtea, Jun 30 2019
    
  • Mathematica
    Select[Prime@Range@80, ! PrimeQ@FromDigits[IntegerDigits@#, 11] &] (* Vincenzo Librandi, Jul 01 2019 *)
  • PARI
    isok(p) = isprime(p) && (d=digits(p)) && !isprime(fromdigits(d, 11)); \\ Michel Marcus, Jun 30 2019

Extensions

Corrected by Zak Seidov, Feb 25 2004
Previous Showing 11-20 of 70 results. Next