A342088
Triangle read by rows: T(n,k) is the number of n-colorings of the vertices of the k-dimensional cross polytope such that no two adjacent vertices have the same color. 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 4, 2, 1, 9, 18, 6, 1, 16, 84, 96, 24, 1, 25, 260, 780, 600, 120, 1, 36, 630, 4080, 7560, 4320, 720, 1, 49, 1302, 15330, 61320, 78120, 35280, 5040, 1, 64, 2408, 45696, 351120, 913920, 866880, 322560, 40320
Offset: 0
Triangle begins:
n\k| 0 1 2 3 4 5 6 7 8
---+----------------------------------------------------------
0 | 1
1 | 1, 1
2 | 1, 4, 2
3 | 1, 9, 18, 6
4 | 1, 16, 84, 96, 24
5 | 1, 25, 260, 780, 600, 120
6 | 1, 36, 630, 4080, 7560, 4320, 720
7 | 1, 49, 1302, 15330, 61320, 78120, 35280, 5040
8 | 1, 64, 2408, 45696, 351120, 913920, 866880, 322560, 40320
-
T[n_, k_] := Sum[n! k!/((n - k - j)! (k - j)! j!), {j, 0, k}]
A123659
a(n) = 1 + n^4 + n^6 + n^9 + n^10 + n^14.
Original entry on oeis.org
6, 18001, 4862512, 269750529, 6115250626, 78434755921, 678546021756, 4399254736897, 22880667197854, 100011001010001, 379778130741736, 1283985544700161, 3937524853545882, 11112316748827729, 29193541130581876
Offset: 1
-
[1 + n^4 + n^6 + n^9 + n^10 + n^14: n in [1..25]]; // G. C. Greubel, Oct 17 2017
-
Table[1 + n^4 + n^6 + n^9 + n^10 + n^14, {n, 1, 50}] (* G. C. Greubel, Oct 17 2017 *)
-
for(n=1,25, print1(1 + n^4 + n^6 + n^9 + n^10 + n^14, ", ")) \\ G. C. Greubel, Oct 17 2017
A131472
a(n) = n^6 + n.
Original entry on oeis.org
0, 2, 66, 732, 4100, 15630, 46662, 117656, 262152, 531450, 1000010, 1771572, 2985996, 4826822, 7529550, 11390640, 16777232, 24137586, 34012242, 47045900, 64000020, 85766142, 113379926, 148035912, 191103000, 244140650, 308915802
Offset: 0
-
[n^6+n: n in [0..30]]; // _Vincenzo Librandi+, Oct 01 2011
-
Table[n^6+n,{n,0,60}] (* Vladimir Joseph Stephan Orlovsky, May 12 2011 *)
LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,2,66,732,4100,15630,46662},60] (* Harvey P. Dale, May 03 2012 *)
A342073
Number of n-colorings of the vertices of the 5-dimensional cross polytope such that no two adjacent vertices have the same color.
Original entry on oeis.org
0, 0, 0, 0, 0, 120, 4320, 78120, 913920, 7575120, 46751040, 224587440, 881591040, 2946869640, 8659691040, 22915652760, 55611279360, 125508233760, 266320172160, 535945217760, 1030028705280, 1901347885080, 3386866301280, 5844714201480, 9803816225280
Offset: 0
- Peter Kagey, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
-
p = ChromaticPolynomial[CompleteGraph[Table[2, 5]], x];
Table[p /. x -> n, {n, 0, 50}]
A342074
Number of n-colorings of the vertices of the 6-dimensional cross polytope such that no two adjacent vertices have the same color.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 720, 35280, 866880, 13849920, 158004000, 1347524640, 8866186560, 46496324160, 201705744240, 748737990000, 2444976293760, 7178449299840, 19276199691840, 47983899216960, 111920569776000, 246727594270080, 517702915311120, 1039979954779920
Offset: 0
- Peter Kagey, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
-
p = ChromaticPolynomial[CompleteGraph[Table[2, 6]], x];
Table[p /. x -> n, {n, 0, 50}]
A342075
Number of n-colorings of the vertices of the 7-dimensional cross polytope such that no two adjacent vertices have the same color.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 5040, 322560, 10342080, 216518400, 3261535200, 37026823680, 325474269120, 2264594492160, 12789814237200, 60389186457600, 245221330273920, 877374833287680, 2821277454690240, 8284633867238400, 22503569636419200, 57135310310453760
Offset: 0
- Peter Kagey, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
-
p = ChromaticPolynomial[CompleteGraph[Table[2, 7]], x];
Table[p /. x -> n, {n, 0, 50}]
A380589
Number of n-colorings of the Hypercube Graph Q5.
Original entry on oeis.org
0, 0, 2, 1185282, 130253748108, 2157531034816940, 7905235551766437150, 7365707045872206479742, 2337101560809838105414712, 327425229254999498091796728, 24489214732779742874109277530, 1119349138930999380736025706650, 34471067091433681765512048700932
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Hypercube Graph
- Eric Weisstein's World of Mathematics, Chromatic Polynomial
- Index entries for linear recurrences with constant coefficients, signature (33, -528, 5456, -40920, 237336, -1107568, 4272048, -13884156, 38567100, -92561040, 193536720, -354817320, 573166440, -818809200, 1037158320, -1166803110, 1166803110, -1037158320, 818809200, -573166440, 354817320, -193536720, 92561040, -38567100, 13884156, -4272048, 1107568, -237336, 40920, -5456, 528, -33, 1).
-
a:= n-> (((((((((((((((((((((((((((((((n-80)*n+3160)*n-82080)*n+1575420)*n
-23805776)*n+294640000)*n-3068289720)*n+27406254870)*n-212981036784)*n
+1455643449120)*n-8822129447280)*n+47712047044920)*n-231347639674200)*n
+1009138022379076)*n-3968583456247214)*n+14086095737441185)*n-45124968898112160)*n
+130327084318442384)*n-338572422663483544)*n+788328935798745052)*n
-1636781898149840504)*n+3009654466362869780)*n-4856773984500880124)*n
+6797172300402030636)*n-8122089299204814072)*n+8114599308192145448)*n
-6584797184952049568)*n+4160914137061367054)*n-1915734714629493936)*n
+569711421560808713)*n-81768640551939777)*n:
seq(a(n), n=0..12);
A123657
a(n) = 1 + n^4 + n^6 + n^9.
Original entry on oeis.org
4, 593, 20494, 266497, 1969376, 10125649, 40473658, 134483969, 387958492, 1001010001, 2359733894, 5162787073, 10609354744, 20668614737, 38454800626, 68736319489, 118612097588, 198393407569, 322734873982, 512064160001
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Original entry on oeis.org
22, 471260364628084305, 6457022669043550542502557676, 105149403852520725445003265581519105, 41911381174488637014293971538580334000626
Offset: 1
-
[1 + n^4 + n^6 + n^9 + n^10 + n^14 + n^15 + n^21 + n^22 + n^25 +
n^26 + n^33 + n^34 + n^35 + n^38 + n^39 + n^46 + n^49 + n^51 + n^55 + n^57 + n^58: n in [1..50]]; // G. C. Greubel, Oct 26 2017
-
Table[1 + n^4 + n^6 + n^9 + n^10 + n^14 + n^15 + n^21 + n^22 + n^25 +
n^26 + n^33 + n^34 + n^35 + n^38 + n^39 + n^46 + n^49 + n^51 +
n^55 + n^57 + n^58, {n, 1, 50}] (* G. C. Greubel, Oct 26 2017 *)
-
for(n=1,50, print1(1 + n^4 + n^6 + n^9 + n^10 + n^14 + n^15 + n^21 + n^22 + n^25 + n^26 + n^33 + n^34 + n^35 + n^38 + n^39 + n^46 + n^49 + n^51 + n^55 + n^57 + n^58, ", ")) \\ G. C. Greubel, Oct 26 2017
A190578
a(n) = n^7 + n.
Original entry on oeis.org
0, 2, 130, 2190, 16388, 78130, 279942, 823550, 2097160, 4782978, 10000010, 19487182, 35831820, 62748530, 105413518, 170859390, 268435472, 410338690, 612220050, 893871758, 1280000020, 1801088562, 2494357910, 3404825470, 4586471448
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (8, -28, 56, -70, 56, -28, 8, -1).
Comments