A102206
a(0) = 3, a(1) = 8, a(n+2) = 4*a(n+1) - a(n) - 2.
Original entry on oeis.org
3, 8, 27, 98, 363, 1352, 5043, 18818, 70227, 262088, 978123, 3650402, 13623483, 50843528, 189750627, 708158978, 2642885283, 9863382152, 36810643323, 137379191138, 512706121227, 1913445293768, 7141075053843, 26650854921602, 99462344632563, 371198523608648
Offset: 0
-
a[0] = 3; a[1] = 8; a[n_] := a[n] = 4a[n - 1] - a[n - 2] - 2; Table[a[n], {n, 0, 23}] (* Or *)
CoefficientList[ Series[(2x - 1)(x - 3)/((1 - x)(x^2 - 4x + 1)), {x, 0, 22}], x] (* Robert G. Wilson v, Jan 12 2005 *)
LinearRecurrence[{5,-5,1},{3,8,27},30] (* Harvey P. Dale, Jul 25 2012 *)
-
Vec((2*x-1)*(x-3)/((1-x)*(x^2-4*x+1)) + O(x^30)) \\ Colin Barker, Nov 03 2016
Recurrence in the definition corrected by
R. J. Mathar, Aug 07 2008
A095004
a(n) = 9*a(n-1) - 9*a(n-2) + a(n-3); given a(1) = 1, a(2) = 10, a(3) = 81.
Original entry on oeis.org
1, 10, 81, 640, 5041, 39690, 312481, 2460160, 19368801, 152490250, 1200553201, 9451935360, 74414929681, 585867502090, 4612525087041, 36314333194240, 285902140466881, 2250902790540810, 17721320183859601, 139519658680336000, 1098435949258828401, 8647967935390291210
Offset: 1
a(4) = 640 = 568 + 72 = A076765(3) + A076765(2).
a(4) = 640 = 9*81 - 9*10 + 1.
a(4) = 640, rightmost term in M^4 * [1 0 0]: [145 352 640] = [A095002(4) A095003(4) A095004(4)].
- Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, Polynomial sequences on quadratic curves, Integers, Vol. 15, 2015, #A38.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (9,-9,1).
-
a:= n-> (<<1|1|1>, <1|2|3>, <1|3|6>>^n)[1, 3]:
seq(a(n), n=1..23); # Alois P. Heinz, Jun 06 2021
-
a[n_] := (MatrixPower[{{1, 1, 1}, {1, 2, 3}, {1, 3, 6}}, n].{{1}, {0}, {0}})[[3, 1]]; Table[ a[n], {n, 20}]; (* Robert G. Wilson v, May 29 2004 *)
A129743
a(n) = -(u^n-1)*(v^n-1) with u = 2+sqrt(3), v = 2-sqrt(3).
Original entry on oeis.org
2, 12, 50, 192, 722, 2700, 10082, 37632, 140450, 524172, 1956242, 7300800, 27246962, 101687052, 379501250, 1416317952, 5285770562, 19726764300, 73621286642, 274758382272, 1025412242450, 3826890587532, 14282150107682, 53301709843200, 198924689265122, 742397047217292
Offset: 1
- Stefano Spezia, Table of n, a(n) for n = 1..1700
- G. Everest et al., Primes generated by recurrence sequences, Amer. Math. Monthly, 114 (No. 5, 2007), 417-431.
- Anthony Flatters, Primitive Divisors of some Lehmer-Pierce Sequences, arXiv:0708.2190 [math.NT], 2007.
- Eric Weisstein's World of Mathematics, Gear Graph
- Eric Weisstein's World of Mathematics, Spanning Tree
- Index entries for linear recurrences with constant coefficients, signature (5,-5,1).
-
u:=2+sqrt(3): v:=2-sqrt(3): a:=n->expand(-(u^n-1)*(v^n-1)): seq(a(n),n=1..28); # Emeric Deutsch, May 13 2007
-
Table[-((2 + Sqrt[3])^n - 1)*((2 - Sqrt[3])^n - 1), {n, 30}] // Expand (* Stefan Steinerberger, May 15 2007 *)
LinearRecurrence[{5, -5, 1}, {2, 12, 50}, 30]
LucasL[2 Range[20], Sqrt[2]] - 2 // Round (* Eric W. Weisstein, Mar 28 2018 *)
-
my(x='x+O('x^30)); Vec(2*x*(1+x)/((1-x)*(1-4*x+x^2))) \\ Altug Alkan, Mar 28 2018
A102207
a(n) = 5a(n-1) - 5a(n-2) + a(n-3) with a(0) = 4, a(1) = 17, a(2) = 65.
Original entry on oeis.org
4, 17, 65, 244, 912, 3405, 12709, 47432, 177020, 660649, 2465577, 9201660, 34341064, 128162597, 478309325, 1785074704, 6661989492, 24862883265, 92789543569, 346295291012, 1292391620480, 4823271190909, 18000693143157
Offset: 0
-
a[0] = 4; a[1] = 17; a[2] = 65; a[n_] := a[n] = 5a[n - 1] - 5a[n - 2] + a[n - 3]; Table[ a[n], {n, 0, 22}] (* Or *)
CoefficientList[ Series[(3x - 4)/((x - 1)(x^2 - 4x + 1)), {x, 0, 22}], x] (* Robert G. Wilson v, Jan 12 2005 *)
LinearRecurrence[{5,-5,1},{4,17,65},30] (* or *) With[{c=Sqrt[3]},Table[ Simplify[ ((3-7c)(2-c)^x+(2+c)^x (3+7c)-6)/12],{x,30}]] (* Harvey P. Dale, Mar 15 2013 *)
A140824
Expansion of (x-x^3)/(1-3*x+2*x^2-3*x^3+x^4).
Original entry on oeis.org
0, 1, 3, 6, 15, 41, 108, 281, 735, 1926, 5043, 13201, 34560, 90481, 236883, 620166, 1623615, 4250681, 11128428, 29134601, 76275375, 199691526, 522799203, 1368706081, 3583319040, 9381251041, 24560434083, 64300051206, 168339719535, 440719107401, 1153817602668
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Peter Bala, Linear divisibility sequences and Chebyshev polynomials
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences, Integers, Volume 12A (2012) The John Selfridge Memorial Volume
- Index entries for linear recurrences with constant coefficients, signature (3,-2,3,-1).
Cf.
A006238,
A005248,
A054493,
A078070,
A092184,
A098306,
A100047,
A100048,
A108196,
A138573,
A152090,
A218134.
-
LinearRecurrence[{3, -2, 3, -1}, {0, 1, 3, 6}, 50] (* G. C. Greubel, Aug 08 2017 *)
-
x='x+O('x^50); concat([0], Vec((x-x^3)/(1-3*x+2*x^2-3*x^3+x^4))) \\ G. C. Greubel, Aug 08 2017
A335649
a(n) is the frequency of multi-pairs in a sequence of multi-set designs with 2 blocks.
Original entry on oeis.org
0, 10, 200, 3040, 43320, 607050, 8468880, 118007680, 1643826800, 22896269770, 318906570840, 4441805503200, 61866406977960, 861688028423050, 12001766499380000, 167163044860403200, 2328280868627854560, 32428769142358413450, 451674487223023755240, 6291014052348080593120
Offset: 1
For V={x,y} the design for n=2 are the blocks {xxxxxy,xyyyyy}. Pair frequencies of the multi-pairs xx, yy, and xy in these 2 blocks are all a(2)=10.
A092184(3)=6, and the above example has blocks of size 6.
- A. Assaf, A. Hartman, E. Mendelsohn, Multi-set Designs-Designs having blocks with repeated elements, Congressus Numerantium, 48 (1985), 7-24.
A092184(n+1) is the block size of the n-th design in the sequence.
-
LinearRecurrence[{19, -76, 76, -19, 1}, {0, 10, 200, 3040, 43320, 607050}, 20] (* Amiram Eldar, Jun 16 2020 *)
-
concat(0, Vec(10*x^2*(1 + x) / ((1 - x)*(1 - 14*x + x^2)*(1 - 4*x + x^2)) + O(x^20))) \\ Colin Barker, Jun 16 2020
Comments