cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-46 of 46 results.

A102206 a(0) = 3, a(1) = 8, a(n+2) = 4*a(n+1) - a(n) - 2.

Original entry on oeis.org

3, 8, 27, 98, 363, 1352, 5043, 18818, 70227, 262088, 978123, 3650402, 13623483, 50843528, 189750627, 708158978, 2642885283, 9863382152, 36810643323, 137379191138, 512706121227, 1913445293768, 7141075053843, 26650854921602, 99462344632563, 371198523608648
Offset: 0

Views

Author

Creighton Dement, Dec 30 2004

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 3; a[1] = 8; a[n_] := a[n] = 4a[n - 1] - a[n - 2] - 2; Table[a[n], {n, 0, 23}] (* Or *)
    CoefficientList[ Series[(2x - 1)(x - 3)/((1 - x)(x^2 - 4x + 1)), {x, 0, 22}], x] (* Robert G. Wilson v, Jan 12 2005 *)
    LinearRecurrence[{5,-5,1},{3,8,27},30] (* Harvey P. Dale, Jul 25 2012 *)
  • PARI
    Vec((2*x-1)*(x-3)/((1-x)*(x^2-4*x+1)) + O(x^30)) \\ Colin Barker, Nov 03 2016

Formula

G.f.: (2x-1)(x-3)/((1-x)(x^2-4x+1)).
a(n) = A092184(n+1) + 2; a(n+1) - a(n) = A001834(n+1) (see comment).
a(0)=3, a(1)=8, a(2)=27, a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3). - Harvey P. Dale, Jul 25 2012
a(n) = (2+(2-sqrt(3))^(1+n)+(2+sqrt(3))^(1+n))/2. - Colin Barker, Nov 03 2016

Extensions

More terms from Robert G. Wilson v, Jan 12 2005
Recurrence in the definition corrected by R. J. Mathar, Aug 07 2008

A095004 a(n) = 9*a(n-1) - 9*a(n-2) + a(n-3); given a(1) = 1, a(2) = 10, a(3) = 81.

Original entry on oeis.org

1, 10, 81, 640, 5041, 39690, 312481, 2460160, 19368801, 152490250, 1200553201, 9451935360, 74414929681, 585867502090, 4612525087041, 36314333194240, 285902140466881, 2250902790540810, 17721320183859601, 139519658680336000, 1098435949258828401, 8647967935390291210
Offset: 1

Views

Author

Gary W. Adamson, May 27 2004

Keywords

Comments

A sequence derived from A076765, with a(n)/a(n-1) tending to 4 + sqrt(15).
a(n)/a(n-1) tends to C = 4 + sqrt(15) = 7.87298334... (C having the property that C + 1/C = 8). Eigenvalues of M (1, C, 1/C) are roots to x^3 - 9x^2 + 9x - 1.
This is the r=10 member of the r-family of sequences S_r(n), n>=1, defined in A092184, where more information can be found.

Examples

			a(4) = 640 = 568 + 72 = A076765(3) + A076765(2).
a(4) = 640 = 9*81 - 9*10 + 1.
a(4) = 640, rightmost term in M^4 * [1 0 0]: [145 352 640] = [A095002(4) A095003(4) A095004(4)].
		

Crossrefs

Programs

  • Maple
    a:= n-> (<<1|1|1>, <1|2|3>, <1|3|6>>^n)[1, 3]:
    seq(a(n), n=1..23);  # Alois P. Heinz, Jun 06 2021
  • Mathematica
    a[n_] := (MatrixPower[{{1, 1, 1}, {1, 2, 3}, {1, 3, 6}}, n].{{1}, {0}, {0}})[[3, 1]]; Table[ a[n], {n, 20}]; (* Robert G. Wilson v, May 29 2004 *)

Formula

a(n) = A076765(n-1) + A076765(n-2).
Let M be the 3 X 3 matrix [1 1 1 / 1 2 3 / 1 3 6]; then M^n * [1 0 0] = [A095002(n) A095003(n) a(n)].
a(n)= (T(n, 4)-1)/3 with Chebyshev's polynomials of the first kind evaluated at x=4: T(n, 4)=A001091(n). a(0):=0. - Wolfdieter Lang, Oct 18 2004
G.f.: x*(1+x)/((1-x)*(1-8*x+x^2)) = x*(1+x)/(1-9*x+9*x^2-x^3).

Extensions

Edited and extended by Robert G. Wilson v, May 29 2004
Definition aligned with A095002, A095003 by Georg Fischer, Jun 06 2021

A129743 a(n) = -(u^n-1)*(v^n-1) with u = 2+sqrt(3), v = 2-sqrt(3).

Original entry on oeis.org

2, 12, 50, 192, 722, 2700, 10082, 37632, 140450, 524172, 1956242, 7300800, 27246962, 101687052, 379501250, 1416317952, 5285770562, 19726764300, 73621286642, 274758382272, 1025412242450, 3826890587532, 14282150107682, 53301709843200, 198924689265122, 742397047217292
Offset: 1

Views

Author

N. J. A. Sloane, May 13 2007

Keywords

Comments

Each term of this sequence beyond the sixth has a primitive prime divisor. - Anthony Flatters (Anthony.Flatters(AT)uea.ac.uk), Aug 17 2007
a(n) is also the number of spanning trees for the n-gear graph. - Eric W. Weisstein, Jul 16 2011

Crossrefs

Programs

  • Maple
    u:=2+sqrt(3): v:=2-sqrt(3): a:=n->expand(-(u^n-1)*(v^n-1)): seq(a(n),n=1..28); # Emeric Deutsch, May 13 2007
  • Mathematica
    Table[-((2 + Sqrt[3])^n - 1)*((2 - Sqrt[3])^n - 1), {n, 30}] // Expand (* Stefan Steinerberger, May 15 2007 *)
    LinearRecurrence[{5, -5, 1}, {2, 12, 50}, 30]
    LucasL[2 Range[20], Sqrt[2]] - 2 // Round (* Eric W. Weisstein, Mar 28 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec(2*x*(1+x)/((1-x)*(1-4*x+x^2))) \\ Altug Alkan, Mar 28 2018

Formula

a(2*n) = 12*A001353(n)^2, a(2*n+1) = 2*A001834(n)^2. - Vladeta Jovovic, May 30 2007
a(n) = 2*A092184(n). - Robert G. Wilson v, Jul 04 2007
O.g.f.: 2*x*(1+x)/((1-x)*(1-4*x+x^2)). - R. J. Mathar, Dec 05 2007
a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3). - Eric W. Weisstein, Jul 15 2011
E.g.f.: 2*exp(x)*(exp(x)*cosh(sqrt(3)*x) - 1). - Stefano Spezia, May 05 2024

Extensions

More terms from Emeric Deutsch and Stefan Steinerberger, May 13 2007
More terms from Vladeta Jovovic, May 30 2007

A102207 a(n) = 5a(n-1) - 5a(n-2) + a(n-3) with a(0) = 4, a(1) = 17, a(2) = 65.

Original entry on oeis.org

4, 17, 65, 244, 912, 3405, 12709, 47432, 177020, 660649, 2465577, 9201660, 34341064, 128162597, 478309325, 1785074704, 6661989492, 24862883265, 92789543569, 346295291012, 1292391620480, 4823271190909, 18000693143157
Offset: 0

Views

Author

Creighton Dement, Dec 30 2004

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 4; a[1] = 17; a[2] = 65; a[n_] := a[n] = 5a[n - 1] - 5a[n - 2] + a[n - 3]; Table[ a[n], {n, 0, 22}] (* Or *)
    CoefficientList[ Series[(3x - 4)/((x - 1)(x^2 - 4x + 1)), {x, 0, 22}], x] (* Robert G. Wilson v, Jan 12 2005 *)
    LinearRecurrence[{5,-5,1},{4,17,65},30] (* or *) With[{c=Sqrt[3]},Table[ Simplify[ ((3-7c)(2-c)^x+(2+c)^x (3+7c)-6)/12],{x,30}]] (* Harvey P. Dale, Mar 15 2013 *)

Formula

G.f.: (3x-4)/((x-1)(x^2-4x+1))
(1/2) [A001353(n+1) + 5*A001353(n) - 1 ]. - Ralf Stephan, May 17 2007
a(n)=1/12*((3-7*Sqrt[3])*(2-Sqrt[3])^n+(3+7*Sqrt[3])*(2+Sqrt[3])^n-6). - Harvey P. Dale, Mar 15 2013

Extensions

More terms from Robert G. Wilson v, Jan 12 2005

A140824 Expansion of (x-x^3)/(1-3*x+2*x^2-3*x^3+x^4).

Original entry on oeis.org

0, 1, 3, 6, 15, 41, 108, 281, 735, 1926, 5043, 13201, 34560, 90481, 236883, 620166, 1623615, 4250681, 11128428, 29134601, 76275375, 199691526, 522799203, 1368706081, 3583319040, 9381251041, 24560434083, 64300051206, 168339719535, 440719107401, 1153817602668
Offset: 0

Views

Author

N. J. A. Sloane, Sep 07 2009, based on email from R. K. Guy, Mar 09 2009

Keywords

Comments

Case P1 = 3, P2 = 0, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 25 2014

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, -2, 3, -1}, {0, 1, 3, 6}, 50] (* G. C. Greubel, Aug 08 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec((x-x^3)/(1-3*x+2*x^2-3*x^3+x^4))) \\ G. C. Greubel, Aug 08 2017

Formula

a(0) = 0, a(1) = 1, a(2) = 3, a(3) = 6, a(n) - 3 a(n + 1) + 2 a(n + 2) - 3 a(n + 3) + a(n + 4) = 0.
From Peter Bala, Mar 25 2014: (Start)
a(n) = 2/3*( T(n,3/2) - T(n,0) ), where T(n,x) is a Chebyshev polynomial of the first kind.
a(n) = 1/3 * (A005248(n) - (i^n + (-i)^n)) = 1/3 * (Fibonacci(2*n-1) + Fibonacci(2*n+1) - (i^n + (-i)^n)).
a(n) = bottom left entry of the 2 X 2 matrix 2*T(n, 1/2*M), where M is the 2 X 2 matrix [0, 0; 1, 3].
The o.g.f. is the Hadamard product of the rational functions x/(1 - 1/sqrt(2)*(sqrt(5) + i)*x + x^2) and x/(1 - 1/sqrt(2)*(sqrt(5) - i)*x + x^2). See the remarks in A100047 for the general connection between Chebyshev polynomials and 4th-order linear divisibility sequences. (End)
a(n) = A099483(n) - A099483(n-2). - R. J. Mathar, Feb 10 2016

A335649 a(n) is the frequency of multi-pairs in a sequence of multi-set designs with 2 blocks.

Original entry on oeis.org

0, 10, 200, 3040, 43320, 607050, 8468880, 118007680, 1643826800, 22896269770, 318906570840, 4441805503200, 61866406977960, 861688028423050, 12001766499380000, 167163044860403200, 2328280868627854560, 32428769142358413450, 451674487223023755240, 6291014052348080593120
Offset: 1

Views

Author

John P. McSorley, Jun 15 2020

Keywords

Examples

			For V={x,y} the design for n=2 are the blocks {xxxxxy,xyyyyy}. Pair frequencies of the multi-pairs xx, yy, and xy in these 2 blocks are all a(2)=10.
A092184(3)=6, and the above example has blocks of size 6.
		

References

  • A. Assaf, A. Hartman, E. Mendelsohn, Multi-set Designs-Designs having blocks with repeated elements, Congressus Numerantium, 48 (1985), 7-24.

Crossrefs

A092184(n+1) is the block size of the n-th design in the sequence.

Programs

  • Mathematica
    LinearRecurrence[{19, -76, 76, -19, 1}, {0, 10, 200, 3040, 43320, 607050}, 20] (* Amiram Eldar, Jun 16 2020 *)
  • PARI
    concat(0, Vec(10*x^2*(1 + x) / ((1 - x)*(1 - 14*x + x^2)*(1 - 4*x + x^2)) + O(x^20))) \\ Colin Barker, Jun 16 2020

Formula

a(n) = (1/12)*((2+sqrt(3))^(2*n) + (2-sqrt(3))^(2*n) - 6*(2+sqrt(3))^n - 6*(2-sqrt(3))^n + 10).
a(n) = (1/3)*(A092184(n+1)*(A092184(n+1)-1)).
From Colin Barker, Jun 16 2020: (Start)
G.f.: 10*x^2*(1 + x) / ((1 - x)*(1 - 14*x + x^2)*(1 - 4*x + x^2)).
a(n) = 19*a(n-1) - 76*a(n-2) + 76*a(n-3) - 19*a(n-4) + a(n-5) for n>5.
(End)

Extensions

More terms from Jinyuan Wang, Jun 15 2020
Previous Showing 41-46 of 46 results.