cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 47 results. Next

A174269 Numbers k such that exactly one of 2^k - 1 and 2^k + 1 is a prime.

Original entry on oeis.org

0, 1, 3, 4, 5, 7, 8, 13, 16, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 14 2010

Keywords

Comments

Apart from the first term, all terms are primes (Mersenne exponents) or powers of two (Fermat exponents). The sequence consists of all members of A000043 and A092506, apart from 2. - Charles R Greathouse IV, Mar 20 2010
Numbers k such that one of 2^k+1 or 2^k-1 is prime, but not both. - R. J. Mathar, Mar 29 2010
The sequence "Numbers k such that 2^k + (-1)^k is a prime" gives essentially the same sequence, except with the initial 1 replaced by 2. - Thomas Ordowski, Dec 26 2016
The union of 2 and this sequence gives the values k for which 2^k or 2^k - 1 are the numbers in A006549. - Gionata Neri, Dec 19 2015
The union of 2 and this sequence is the values k for which either 2^k - 1 or 2^k + 1, or both, are prime. The reason why this only yields one additional term, 2, is because the number 3 always divides either 2^k - 1 or 2^k + 1 (also implicit in Ordowski comment). - Jeppe Stig Nielsen, Feb 19 2023

Examples

			0 is in the sequence because 2^0 - 1 = 0 is nonprime and 2^0 + 1 = 2 is prime; 2 is not in the sequence because 2^2 - 1 = 3 and 2^2 + 1 = 5 are both prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 5000], Xor[PrimeQ[2^# - 1], PrimeQ[2^# + 1]] &] (* Michael De Vlieger, Jan 03 2016 *)
  • PARI
    isok(k) = my(p = 2^k-1, q = p+2); bitxor(isprime(p), isprime(q)); \\ Michel Marcus, Jan 03 2016

Formula

a(n) = A285929(n) for n > 2. - Jeppe Stig Nielsen, Feb 19 2023

Extensions

a(10)-a(43) from Charles R Greathouse IV, Mar 20 2010

A228029 Primes of the form 5^n + 6.

Original entry on oeis.org

7, 11, 31, 131, 631, 1220703131
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Crossrefs

Cf. A089142 (associated n).
Cf. Primes of the form k^n + h: A092506 (k=2, h=1), A057733 (k=2, h=3), A123250 (k=2, h=5), A104066 (k=2, h=7), A104070 (k=2, h=9), A057735 (k=3, h=2), A102903 (k=3, h=4), A102870 (k=3, h=8), A102907 (k=3, h=10), A290200 (k=4, h=1), A182330 (k=5, h=2), this sequence (k=5, h=6), A102910 (k=5, h=8), A182331 (k=6, h=1), A104118 (k=6, h=5), A104115 (k=6, h=7), A104065 (k=7, h=4), A144360 (k=8, h=7), A145440 (k=8, h=9), A228034 (k=9, h=2), A159352 (k=10, h=3), A159031 (k=10, h=7).

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is  5^n+6];
  • Mathematica
    Select[Table[5^n + 6, {n, 0, 200}], PrimeQ]

Extensions

Corrected cross-references - Robert Price, Aug 01 2017

A228030 Primes of the form 7^n + 6.

Original entry on oeis.org

7, 13, 349, 33232930569607, 2651730845859653471779023381607
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Crossrefs

Cf. A217130 (associated n).
Cf. Primes of the form k^n + h: A092506 (k=2, h=1), A057733 (k=2, h=3), A123250 (k=2, h=5), A104066 (k=2, h=7), A104070 (k=2, h=9), A057735 (k=3, h=2), A102903 (k=3, h=4), A102870 (k=3, h=8), A102907 (k=3, h=10), A290200 (k=4, h=1), A182330 (k=5, h=2), A102910 (k=5, h=8), A182331 (k=6, h=1), A104118 (k=6, h=5), A104115 (k=6, h=7), A104065 (k=7, h=4), this sequence (k=7, h=6), A144360 (k=8, h=7), A145440 (k=8, h=9), A228034 (k=9, h=2), A159352 (k=10, h=3), A159031 (k=10, h=7).

Programs

  • Magma
    [a: n in [0..300] | IsPrime(a) where a is  7^n+6];
  • Mathematica
    Select[Table[7^n + 6, {n, 0, 300}], PrimeQ]

Extensions

Corrected cross-references - Robert Price, Aug 01 2017

A228031 Primes of the form 7^n + 10.

Original entry on oeis.org

11, 17, 59, 353, 2411, 117659, 823553, 1977326753, 9387480337647754305659, 3219905755813179726837617, 44567640326363195900190045974568017, 616873509628062366290756156815389726793178417, 30226801971775055948247051683954096612865741953
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Crossrefs

Cf. A217132 (associated n).
Cf. Primes of the form k^n + h: A092506 (k=2, h=1), A057733 (k=2, h=3), A123250 (k=2, h=5), A104066 (k=2, h=7), A104070 (k=2, h=9), A057735 (k=3, h=2), A102903 (k=3, h=4), A102870 (k=3, h=8), A102907 (k=3, h=10), A290200 (k=4, h=1), A182330 (k=5, h=2), A102910 (k=5, h=8), A182331 (k=6, h=1), A104118 (k=6, h=5), A104115 (k=6, h=7), A104065 (k=7, h=4), this sequence (k=7, h=10), A144360 (k=8, h=7), A145440 (k=8, h=9), A228034 (k=9, h=2), A159352 (k=10, h=3), A159031 (k=10, h=7).

Programs

  • Magma
    [a: n in [0..300] | IsPrime(a) where a is  7^n+10];
  • Mathematica
    Select[Table[7^n + 10, {n, 0, 300}], PrimeQ]

Extensions

Corrected cross-references - Robert Price, Aug 01 2017

A113402 Algebraic degree of cos(Pi/n) for constructible n-gons (A003401).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 8, 16, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128, 128, 128, 128, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512, 512
Offset: 1

Views

Author

Eric W. Weisstein, Oct 28 2005

Keywords

Comments

a(n) is always a power of 2.
It would appear that a(n) <= a(n+1) and that for a(n)=2^k, the count for k beginning with 0 is 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, ...; or that the count for k is k+2 for k > 0. - Robert G. Wilson v, Jul 31 2014
Apparently v_2(a(n)) = A052146(n-1) for n >= 2 where v_2 is the 2-adic valuation. - Joerg Arndt, Jul 29 2014 [incorrect for n >= 561, Joerg Arndt, Mar 03 2019]

Crossrefs

Programs

  • Mathematica
    f[n_] := Exponent[MinimalPolynomial[Cos[Pi/n]][x], x]; Table[ f@ n, {n, Select[ Range@ 1300, IntegerQ[ Log[2, EulerPhi[#]]] &]}] (* Robert G. Wilson v, Jul 28 2014 *)
    A092506 = {2, 3, 5, 17, 257, 65537}; s = Sort[Times @@@ Subsets@ A092506]; mx = 2500; t = Union@ Flatten@ Table[(2^n)*s[[i]], {i, 64}, {n, 0, Log2[mx/s[[i]]]}]; f[n_] := EulerPhi[ 2n]/2; f[1] = 1; f@# & /@ t (* Robert G. Wilson v, Jul 28 2014 *)

A164307 Primes in A081175.

Original entry on oeis.org

3, 5, 17, 257, 65537
Offset: 1

Views

Author

Keywords

Comments

The 6th term is too large to include in the data section (see Example section or the b-file).
Primes of the form sum_{j=1..u} j^x for some x>0, u>1. (Since the case of x=1 leads to the triangular numbers with no additional primes, this is equivalent to the definition.)
Primes in A000330 (x=2), or in A000537 (x=3), or in A000538 (x=4), or in A000539 (x=5) etc. See A164312 for the corresponding x values.

Examples

			a(1) = 1^1 + 2^1 = 3.
a(2) = 1^2 + 2^2 = 5.
a(3) = 1^4 + 2^4 = 17.
a(4) = 1^8 + 2^8 = 257.
a(5) = 1^16 + 2^16 = 65537.
a(6) = 1^1440 + 2^1440 + 3^1440 + 4^1440 + 5^1440 = 3.287049497374559048967261852*10^1006 = 3287049497374559048967261852 ... 458593539025033893379.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[s=0;Do[If[PrimeQ[s+=n^x],AppendTo[lst,s];Print[Date[],s]],{n, 4!}],{x,7!}];lst

Extensions

Edited by R. J. Mathar, Aug 22 2009
Corrected by N. J. A. Sloane, Nov 23 2015 at the suggestion of Jaroslav Krizek.

A173236 Primes of the form 2^r * 13^s + 1.

Original entry on oeis.org

2, 3, 5, 17, 53, 257, 677, 3329, 13313, 35153, 65537, 2768897, 13631489, 2303721473, 3489660929, 4942652417, 11341398017, 10859007357953, 1594691292233729, 31403151600910337, 310144109150467073, 578220423796228097
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Feb 13 2010

Keywords

Comments

Necessarily r is even (elementary proof by induction).
s=0 is (trivial) case of 2 and the known five Fermat primes: 2, 3, 5, 17, 257, 65537 (A092506).
Fermat prime exponents r are 0, 1, 2, 4, 8, 16.

Examples

			2^0*13^0 + 1 = 2 = prime(1) => a(1).
2^10*13^1 + 1 = 13313 = prime(1581) => a(9).
list of (r,s): (0,0), (1,0), (2,0), (4,0), (2,1), (8,0), (2,2), (8,1), (10,1), (4,3), (16,0), (14,2), (20,1), (20,3), (28,1), (10,6), (26,2), (10,9), (32,5), (40,4), (10,13), (22,10), (32,8), (48,4), (20,13), (2,18), (28,11), (50,6).
		

References

  • Emil Artin, Galoissche Theorie, Verlag Harri Deutsch, Zürich, 1973.
  • Leonard E. Dickson, History of the Theory of numbers, vol. I, Dover Publications, 2005.
  • Paulo Ribenboim, Wilfrid Keller, and Joerg Richstein, Die Welt der Primzahlen, Springer-Verlag GmbH Berlin, 2006.

Crossrefs

Programs

  • GAP
    K:=10^7;; # to get all terms <= K.
    A:=Filtered([1..K],IsPrime);;
    B:=List(A,i->Factors(i-1));;
    C:=[];;  for i in B do if Elements(i)=[2] or Elements(i)=[2,13] then Add(C,Position(B,i)); fi; od;
    A173236:=Concatenation([2],List(C,i->A[i])); # Muniru A Asiru, Sep 10 2017
    
  • Python
    from itertools import count, islice
    from sympy import isprime, integer_log
    def A173236_gen(): # generator of terms
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(n):
            def f(x): return n+x-sum(((x-1)//13**i).bit_length() for i in range(integer_log(x-1,13)[0]+1))
            return bisection(f,n+1,n+1)
        return filter(lambda n:isprime(n), map(g,count(1)))
    A173236_list = list(islice(A173236_gen(),30)) # Chai Wah Wu, Mar 31 2025

A228027 Primes of the form 4^k + 9.

Original entry on oeis.org

13, 73, 1033, 262153, 1073741833, 73786976294838206473, 4835703278458516698824713
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Comments

Subsequence of A104070. - Elmo R. Oliveira, Nov 28 2023

Examples

			262153 is a term because 4^9 + 9 = 262153 is prime.
		

Crossrefs

Cf. A000040, A217350 (corresponding k's).
Cf. Primes of the form r^k + h: A092506 (r=2, h=1), A057733 (r=2, h=3), A123250 (r=2, h=5), A104066 (r=2, h=7), A104070 (r=2, h=9), A057735 (r=3, h=2), A102903 (r=3, h=4), A102870 (r=3, h=8), A102907 (r=3, h=10), A290200 (r=4, h=1), A228026 (r=4, h=3), this sequence (r=4, h=9), A182330 (r=5, h=2), A228029 (r=5, h=6), A102910 (r=5, h=8), A182331 (r=6, h=1), A104118 (r=6, h=5), A104115 (r=6, h=7), A104065 (r=7, h=4), A228030 (r=7, h=6), A228031 (r=7, h=10), A228032 (r=8, h=3), A228033 (r=8, h=5), A144360 (r=8, h=7), A145440 (r=8, h=9), A228034 (r=9, h=2), A159352 (r=10, h=3), A159031 (r=10, h=7).

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is 4^n+9];
  • Mathematica
    Select[Table[4^n + 9, {n, 0, 200}],PrimeQ]

Formula

a(n) = 4^A217350(n) + 9. - Elmo R. Oliveira, Nov 28 2023

Extensions

Corrected cross-references - Robert Price, Aug 01 2017

A228033 Primes of the form 8^k + 5.

Original entry on oeis.org

13, 2787593149816327892691964784081045188247557, 15177100720513508366558296147058741458143803430094840009779784451085189728165691397
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Comments

a(4) = 8^64655 + 5 = 1.919...*10^58389 is too large to include. - Amiram Eldar, Jul 23 2025

Crossrefs

Cf. A217355 (associated n).
Cf. Primes of the form k^n + h: A092506 (k=2, h=1), A057733 (k=2, h=3), A123250 (k=2, h=5), A104066 (k=2, h=7), A104070 (k=2, h=9), A057735 (k=3, h=2), A102903 (k=3, h=4), A102870 (k=3, h=8), A102907 (k=3, h=10), A290200 (k=4, h=1), A182330 (k=5, h=2), A102910 (k=5, h=8), A182331 (k=6, h=1), A104118 (k=6, h=5), A104115 (k=6, h=7), A104065 (k=7, h=4), this sequence (k=8, h=5), A144360 (k=8, h=7), A145440 (k=8, h=9), A228034 (k=9, h=2), A159352 (k=10, h=3), A159031 (k=10, h=7).

Programs

  • Magma
    [a: n in [1..300] | IsPrime(a) where a is 8^n+5];
  • Mathematica
    Select[Table[8^n + 5, {n, 4000}], PrimeQ]

A366422 Numbers k such that k^4*2^k + 1 is a prime.

Original entry on oeis.org

1, 24, 33, 36, 99, 195, 244, 464, 567, 621, 741, 1395, 2164, 3309, 3537, 3708, 4413, 5001, 5187, 5292, 15504, 18816, 19521, 24657, 27972, 57687
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 16 2023

Keywords

Comments

No further terms <= 100000. - Michael S. Branicky, Nov 17 2023

Crossrefs

Numbers k such that k^m*2^k + 1 is a prime: 0, 1, 2, 4, 8, 16, .. (m = 0), A005849 (m = 1), A058780 (m = 2), A357612 (m = 3), this sequence (m = 4).

Programs

  • Magma
    [k: k in [0..4000] | IsPrime(k^4*2^k+1)];
  • Mathematica
    Select[Range[6000], PrimeQ[#^4*2^# + 1] &] (* Amiram Eldar, Nov 16 2023 *)

Extensions

a(22)-a(25) from Amiram Eldar, Nov 17 2023
a(26) from Michael S. Branicky, Nov 17 2023
Previous Showing 11-20 of 47 results. Next