cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A088559 Decimal expansion of R^2 where R^2 is the real root of x^3 + 2*x^2 + x - 1 = 0.

Original entry on oeis.org

4, 6, 5, 5, 7, 1, 2, 3, 1, 8, 7, 6, 7, 6, 8, 0, 2, 6, 6, 5, 6, 7, 3, 1, 2, 2, 5, 2, 1, 9, 9, 3, 9, 1, 0, 8, 0, 2, 5, 5, 7, 7, 5, 6, 8, 4, 7, 2, 2, 8, 5, 7, 0, 1, 6, 4, 3, 1, 8, 3, 1, 1, 1, 2, 4, 9, 2, 6, 2, 9, 9, 6, 6, 8, 5, 0, 1, 7, 8, 4, 0, 4, 7, 8, 1, 2, 5, 8, 0, 1, 1, 9, 4, 9, 0, 9, 2, 7, 0, 0, 6, 4, 3, 8
Offset: 0

Views

Author

Benoit Cloitre, Nov 19 2003

Keywords

Comments

Arise in a study of AGM (arithmetic-geometric mean) and HGM (harmonic-geometric mean) - like sequences. Let u(k+1)=sqrt(u(k)*v(k)); v(k+1)=v(k)+u(k) and r(k+1)=sqrt(r(k)*s(k)); s(k+1)=1/(1/r(k)+1/s(k)). Then for any positive initial values u(0),v(0),r(0),s(0) limit k-->oo u(k)/v(k)= limit k-->oo s(k)/r(k)=R^2.
From Wolfdieter Lang, Nov 07 2022: (Start)
This equals r0 - 2/3 where r0 is the real root of y^3 - (1/3)*y - 29/27.
The other roots of x^3 + 2*x^2 + x - 1 are (-2 + w1*((29 + 3*sqrt(93))/2)^(1/3) + w2*((29 - 3*sqrt(93))/2)^(1/3))/3 = -1.2327856159... + 0.7925519925...*i, and its complex conjugate, where w1 = (-1 + sqrt(3)*i)/2 = exp(2*Pi*i/3) and w2 = (-1 - sqrt(3)*i)/2 are the complex conjugate roots of x^3 - 1.
Using hyperbolic functions these roots are (-2 - cosh((1/3)*arccosh(29/2)) + sqrt(3)*sinh((1/3)*arccosh(29/2))*i)/3, and its complex conjugate. (End)

Examples

			0.465571231876768026656731225219939108025577568472285701643183111249262996685...
		

Crossrefs

Programs

  • Mathematica
    Root[x^3 + 2x^2 + x - 1, 1] // RealDigits[#, 10, 104]& // First (* Jean-François Alcover, Mar 04 2013 *)
  • PARI
    allocatemem(932245000); default(realprecision, 20080); x=10*solve(x=0, 1, x^3 + 2*x^2 + x - 1); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b088559.txt", n, " ", d)); \\ Harry J. Smith, Jun 21 2009
    
  • PARI
    polrootsreal(x^3 + 2*x^2 + x - 1)[1] \\ Charles R Greathouse IV, Mar 03 2016

Formula

R^2=0.46557123187676... 1+R^2=1.46557123187676... = A092526 constant.
From Vaclav Kotesovec, Dec 18 2014: (Start)
Equals (1/6)*(116+12*sqrt(93))^(1/3) + 2/(3*(116+12*sqrt(93))^(1/3)) - 2/3.
Equals 2*cos(arccos(29/2)/3)/3 - 2/3.
Equals A092526 - 1.
(End)
From Wolfdieter Lang, Nov 07 2022: (Start)
Equals (-2 + ((29 + 3*sqrt(93))/2)^(1/3) + ((29 + 3*sqrt(93))/2)^(-1/3))/3.
Equals (-2 + ((29 + 3*sqrt(93))/2)^(1/3) + ((29 - 3*sqrt(93))/2)^(1/3))/3.
Also with hperbolic cosh and arccosh instead of cos and arccos above.
(End)

A293508 Decimal expansion of the positive real root of x^6 - x^5 - x^4 + x^2 - 1.

Original entry on oeis.org

1, 5, 0, 1, 5, 9, 4, 8, 0, 3, 5, 3, 9, 0, 8, 7, 3, 6, 6, 3, 7, 7, 7, 8, 3, 1, 2, 7, 3, 7, 1, 0, 4, 6, 1, 0, 8, 4, 8, 6, 3, 9, 8, 3, 3, 6, 2, 5, 3, 5, 8, 5, 3, 4, 2, 2, 4, 8, 3, 9, 4, 1, 8, 6, 0, 6, 3, 3, 4, 3, 6, 1, 2, 5, 9, 7, 1, 2, 8, 8, 9, 8, 1, 3, 4, 1, 1, 4, 2, 4, 6, 0, 2, 9, 2, 0, 0, 2, 0, 1, 7, 2, 5, 5, 8
Offset: 1

Views

Author

Iain Fox, Oct 11 2017

Keywords

Comments

This root is also the fifth smallest of the Pisot numbers.

Examples

			1.501594803539087366377783...
		

Crossrefs

Programs

  • Mathematica
    First@ RealDigits[Root[#^6 - #^5 - #^4 + #^2 - 1 &, 2], 10, 105] (* Michael De Vlieger, Oct 23 2017 *)
  • PARI
    solve(x=1, 2, x^6 - x^5 - x^4 + x^2 - 1) \\ Michel Marcus, Oct 11 2017
    
  • PARI
    { default(realprecision, 20080); x=solve(x=1, 2, x^6 - x^5 - x^4 + x^2 - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b293508.txt", n, " ", d)); }

A293509 Decimal expansion of real root of x^5 - x^3 - x^2 - x - 1.

Original entry on oeis.org

1, 5, 3, 4, 1, 5, 7, 7, 4, 4, 9, 1, 4, 2, 6, 6, 9, 1, 5, 4, 3, 5, 9, 7, 0, 0, 7, 6, 1, 0, 9, 3, 7, 5, 7, 0, 1, 8, 8, 2, 5, 4, 5, 0, 3, 8, 5, 1, 6, 5, 9, 5, 1, 3, 5, 3, 6, 8, 5, 3, 1, 8, 6, 3, 0, 0, 8, 0, 6, 3, 0, 2, 3, 2, 1, 4, 0, 8, 2, 2, 8, 1, 4, 3, 6, 7, 8
Offset: 1

Views

Author

Iain Fox, Oct 11 2017

Keywords

Comments

This root is also the sixth smallest of the Pisot numbers.

Examples

			1.53415774491426691543597007610937570188254503851659513536853186300806302321...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Solve[ x^5 - x^3 - x^2 - x - 1 == 0, x, WorkingPrecision -> 111][[-1, 1, 2]], 10, 111][[1]] (* Robert G. Wilson v, Nov 04 2017 *)
  • PARI
    solve(x=1, 2, x^5 - x^3 - x^2 - x - 1) \\ Michel Marcus, Oct 13 2017
    
  • PARI
    default(realprecision, 20080); x=solve(x=1, 2, x^5 - x^3 - x^2 - x - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b293509.txt", n, " ", d)); \\ Iain Fox, Oct 23 2017
    
  • PARI
    polrootsreal(x^5 - x^3 - x^2 - x - 1)[1] \\ Charles R Greathouse IV, Nov 04 2017

A293557 Decimal expansion of real root of x^7 - x^6 - x^5 + x^2 - 1.

Original entry on oeis.org

1, 5, 4, 5, 2, 1, 5, 6, 4, 9, 7, 3, 2, 7, 5, 5, 2, 4, 3, 2, 5, 2, 5, 5, 0, 6, 2, 4, 1, 0, 5, 1, 1, 6, 1, 1, 9, 6, 9, 1, 4, 7, 0, 0, 5, 5, 3, 6, 4, 2, 3, 3, 1, 2, 3, 5, 6, 0, 6, 1, 0, 7, 2, 5, 4, 9, 8, 2, 1, 1, 5, 8, 8, 1, 6, 6, 5, 3, 3, 1, 2, 0, 5, 0, 4, 3, 1
Offset: 1

Views

Author

Iain Fox, Oct 11 2017

Keywords

Comments

This root is also the seventh smallest of the Pisot numbers.

Examples

			1.545215649732755243252550...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Root[#^7 - #^6 - #^5 + #^2 - 1 &, 1], 10, 100]] (* Paolo Xausa, Jun 25 2024 *)
  • PARI
    solve(x=1, 2, x^7 - x^6 - x^5 + x^2 - 1) \\ Michel Marcus, Oct 13 2017
    
  • PARI
    { default(realprecision, 20080); x=solve(x=1, 2, x^7 - x^6 - x^5 + x^2 - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b293557.txt", n, " ", d)); }

A069241 Number of Hamiltonian paths in the graph on n vertices {1,...,n}, with i adjacent to j iff |i-j| <= 2.

Original entry on oeis.org

1, 1, 1, 3, 6, 10, 17, 28, 44, 68, 104, 157, 235, 350, 519, 767, 1131, 1665, 2448, 3596, 5279, 7746, 11362, 16662, 24430, 35815, 52501, 76956, 112797, 165325, 242309, 355135, 520490, 762830, 1117997, 1638520, 2401384, 3519416, 5157972, 7559393, 11078847
Offset: 0

Views

Author

Don Knuth, Apr 13 2002

Keywords

Comments

Equivalently, the number of bandwidth-at-most-2 arrangements of a straight line of n vertices.

Examples

			For example, the six Hamiltonian paths when n=4 are 1234, 1243, 1324, 1342, 2134, 3124.
		

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix([[1,1,1,0,1]]). Matrix(5, (i,j)-> if i=j-1 then 1 elif j=1 then [3,-3,2,-2,1][i] else 0 fi)^n)[1,3]: seq(a(n), n=0..50); # Alois P. Heinz, Sep 09 2008
  • Mathematica
    a[0] = a[1] = a[2] = 1; a[3] = 3; a[4] = 6; a[n_] := a[n] = 3a[n-1] - 3a[n-2] + 2a[n-3] - 2a[n-4] + a[n-5]; Table[a[n], {n, 0, 38}] (* Jean-François Alcover, Feb 13 2015 *)
    CoefficientList[Series[(3+x+x^2)/(1-x-x^3)-(2-x)/(1-x)^2,{x,0,60}],x] (* or *) LinearRecurrence[{3,-3,2,-2,1},{1,1,1,3,6},60] (* Harvey P. Dale, Apr 07 2019 *)

Formula

a(n) = A003274(n)/2, n > 1.
a(n) = 3*s(n) + s(n-1) + s(n-2) - 2 - n, where s(n) = A000930(n).
G.f.: (3+x+x^2)/(1-x-x^3) - (2-x)/(1-x)^2.
Lim_{n->infinity} a(n+1)/a(n) = A092526 = 1/A263719. - Alois P. Heinz, Apr 15 2018

A224868 a(1) = greatest k such that H(k) - H(4) < 1/3 + 1/4; a(2) = greatest k such that H(k) - H(a(1)) < H(a(1)) - H(4); and for n > 2, a(n) = greatest k such that H(k) - H(a(n-1)) > H(a(n-1)) - H(a(n-2)), where H = harmonic number.

Original entry on oeis.org

7, 11, 17, 26, 39, 58, 86, 127, 187, 275, 404, 593, 870, 1276, 1871, 2743, 4021, 5894, 8639, 12662, 18558, 27199, 39863, 58423, 85624, 125489, 183914, 269540, 395031, 578947, 848489, 1243522, 1822471, 2670962, 3914486, 5736959, 8407923, 12322411, 18059372
Offset: 1

Views

Author

Clark Kimberling, Jul 23 2013

Keywords

Comments

Suppose that x and y are positive integers and that x <=y. Let c(1) = y and c(2) = greatest k such that H(k) - H(y) < H(y) - H(x); for n > 2, let c(n) = greatest such that H(k) - H(c(n-1)) < H(c(n-1)) - H(c(n-2)). Then 1/x + ... + 1/c(1) > 1/(c(1)+1) + ... + 1/(c(2)) > 1/(c(2)+1) + ... + 1/(c(3)) > ... The decreasing sequences H(c(n)) - H(c(n-1)) and c(n)/c(n-1) converge. For what choices of (x,y) is the sequence c(n) linearly recurrent?
For A224868, (x,y) = (3,4); it appears that the sequence a(n) is linearly recurrent with signature (2,-1,1,-1). Possibly the constant at A202537 is the limit of the sequences H(c(n))-H(c(n-1)). Possibly the constant at A092526 is the limit of c(n)/c(n-1).

Examples

			The first three values (a(1),a(2),a(3)) = (7,11,17) match the beginning of the following inequality chain (and partition of {1/m: m>=3}):
1/3+1/4 > 1/5+1/6+1/7 > 1/8+1/9+1/10+1/11 > 1/12+ ... +1/17 > ...
		

Crossrefs

Cf. A224820.

Programs

  • Mathematica
    z = 100; h[n_] := h[n] = HarmonicNumber[N[n, 500]]; x = 3; y = 4; a[1] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[y] - h[x - 1], {w, 1}, WorkingPrecision -> 400]]; a[2] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[a[1]] - h[y], {w, a[1]}, WorkingPrecision -> 400]]; Do[s = 0; a[t] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[a[t - 1]] - h[a[t - 2]], {w, a[t - 1]}, WorkingPrecision -> 400]], {t, 3, z}]; m = Map[a, Range[z]] (* A224868 *)
    N[Table[h[a[t]] - h[a[t - 1]], {t, 2, z, 25}], 5]  (* A202537? *)
    N[Table[a[n]/a[n - 1], {n, 2, z, 25}], 5]  (* A092526? *)
    (* Peter J. C. Moses, Jul 23 2013 *)

Formula

a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) (conjectured).
G.f.: (7 - 3 x + 2 x^2 - 4 x^3)/(1 - 2 x + x^2 - x^3 + x^4) (conjectured).

A065417 Exponents in expansion of rank-2 Artin constant product(1-1/(p^3-p^2), p=prime) as a product zeta(n)^(-a(n)).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 2, 2, 3, 4, 6, 7, 11, 14, 20, 27, 39, 52, 75, 102, 145, 201, 286, 397, 565, 791, 1123, 1581, 2248, 3173, 4517, 6399, 9112, 12945, 18457, 26270, 37502, 53478, 76416, 109146, 156135, 223301, 319764, 457884, 656288, 940795, 1349671, 1936620
Offset: 1

Views

Author

N. J. A. Sloane, Nov 15 2001

Keywords

Comments

Inverse Euler transform of A078012. (The inverse of 1-1/(p^3-p^2) is p^2(p-1)/(p^3-p^2-1) = 1-1/(1+p^2-p^3). Setting 1/p=x gives (1-x)/(1-x-x^3), the g.f. of A078012.) - R. J. Mathar, Jul 26 2010

Examples

			x^3 + x^4 + x^5 + x^6 + 2*x^7 + 2*x^8 + 3*x^9 + 4*x^10 + 6*x^11 + 7*x^12 + ...
		

Crossrefs

Cf. A065414.

Programs

  • Maple
    read("transforms") ;
    A078012 := proc(n) option remember; if n <3 then op(n+1,[1,0,0]) ; else procname(n-1)+procname(n-3) ; end if; end proc:
    a078012 := [seq(A078012(n),n=1..80)] ; EULERi(%) ;
    # R. J. Mathar, Jul 26 2010
  • Mathematica
    A078012[n_] := A078012[n] = If[n<3, {1, 0, 0}[[n+1]], A078012[n-1] + A078012[n-3]]; a078012 = Array[A078012, m = 80];
    s = {}; For[i = 1, i <= m, i++, AppendTo[s, i*a078012[[i]] - Sum[s[[d]] * a078012[[i-d]], {d, i-1}]]]; Table[Sum[If[Divisible[i, d], MoebiusMu[i/d ], 0]*s[[d]], {d, 1, i}]/i, {i, m}] (* Jean-François Alcover, Apr 15 2016, after R. J. Mathar *)

Formula

a(n) ~ r^n / n, where r = A092526 = 1.465571231876768... - Vaclav Kotesovec, Jun 13 2020

Extensions

More terms from R. J. Mathar, Jul 26 2010

A048634 a(n) = a(n-1)*a(n-3) + a(n-2), with a(0)=a(1)=0 and a(2)=1.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 2, 3, 5, 13, 44, 233, 3073, 135445, 31561758, 96989417779, 13136731722638413, 414618347540933702027833, 40213592128486236142855326045681320, 528275171395527518169753769210241662354568290572993
Offset: 0

Views

Author

N. J. A. Sloane, David(AT)interface.co.uk

Keywords

Programs

  • Maple
    A048634 := proc(n) option remember; if n<=1 then 0 elif n=2 then 1 else A048634(n-1)*A048634(n-3)+A048634(n-2); fi; end;
  • Mathematica
    RecurrenceTable[{a[n] == a[n-1]*a[n-3] + a[n-2], a[0] == 0, a[1] == 0, a[2] == 1}, a, {n, 0, 20}] (* Vaclav Kotesovec, Aug 16 2021 *)

Formula

a(n) ~ c^(A092526^n), where c = A344388 = 1.0574735961... (very close to A201506). - Vaclav Kotesovec, Aug 16 2021

Extensions

Name clarified by Michel Marcus, Aug 16 2021

A369346 Continued fraction expansion of the real root of x^3 - x^2 - 1 = 0.

Original entry on oeis.org

1, 2, 6, 1, 3, 5, 4, 22, 1, 1, 4, 1, 2, 84, 1, 3, 1, 6, 1, 3, 1, 9, 1, 1, 1, 1, 19, 3, 1, 2, 1, 5, 1, 5, 2, 2, 1, 1, 1, 1, 76, 6, 8, 1, 1, 5, 1, 5, 1, 1, 25, 1, 2, 1, 116, 2, 1, 8, 1, 1, 3, 1, 53, 5, 276, 2, 1, 1, 1, 3, 3, 2, 1, 1, 4, 13, 1, 1, 1, 4, 1, 1, 1, 9, 9, 1, 1, 9, 6, 1, 2, 32
Offset: 0

Views

Author

Patrick McKinley, Jan 20 2024

Keywords

Crossrefs

Cf. A092526 (decimal expansion), A381124, A381125 (convergents).

Programs

  • Mathematica
    ContinuedFraction[x/.First[Solve[x^3-x^2-1==0,x]],92] (* Stefano Spezia, Jan 21 2024 *)
  • PARI
    \p100 \\ realprecision
    contfrac(solve(x = 1, 2, x^3 - x^2 - 1),, 80) \\ Hugo Pfoertner, Jan 21 2024
  • bc
    /* The "test" calculation evaluates the cubic to confirm the calculation of the root. */
    define iter(frac)
    {j = 0
     while(frac > 1){
       frac -= 1;
       j+=1}
     j
     return 1/frac}
    scale=12578
    f=(1+(e(l(((29+3*sqrt(93))/2))/3))+(e(l(((29-3*sqrt(93))/2))/3)))/3
    psi=f
    test=(psi-1)*psi*psi-1
    for(i=0;i<12175;i++)f=iter(f)
    

Extensions

Offset changed by Andrew Howroyd, Feb 14 2025

A374002 Decimal expansion of the positive real root of x^6 - 2*x^5 + x^4 - x^2 + x - 1.

Original entry on oeis.org

1, 5, 6, 1, 7, 5, 2, 0, 6, 7, 7, 2, 0, 2, 9, 7, 2, 9, 4, 7, 0, 2, 9, 9, 5, 3, 6, 4, 0, 6, 0, 7, 2, 3, 7, 8, 0, 7, 9, 0, 8, 4, 7, 2, 8, 6, 9, 4, 7, 2, 7, 6, 6, 4, 2, 8, 4, 6, 2, 8, 4, 7, 8, 3, 9, 4, 6, 2, 5, 2, 2, 4, 1, 0, 4, 3, 9, 4, 2, 9, 4, 4, 4, 9, 6, 2, 4, 4, 0, 5
Offset: 1

Views

Author

Paolo Xausa, Jun 25 2024

Keywords

Comments

Eighth smallest Pisot-Vijayaraghavan number.

Examples

			1.561752067720297294702995364060723780790847286947...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Root[#^6 - 2*#^5 + #^4 - #^2 + # - 1 &, 2], 10, 100]]
Previous Showing 11-20 of 26 results. Next