A051798
a(n) = (n+1)*(n+2)*(n+3)*(9n+4)/24.
Original entry on oeis.org
1, 13, 55, 155, 350, 686, 1218, 2010, 3135, 4675, 6721, 9373, 12740, 16940, 22100, 28356, 35853, 44745, 55195, 67375, 81466, 97658, 116150, 137150, 160875, 187551, 217413, 250705, 287680, 328600, 373736, 423368, 477785, 537285
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
- Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-8.
Cf.
A093644 ((9, 1) Pascal, column m=4).
Cf.
A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.
-
/* A000027 convolved with A051682 (excluding 0): */ A051682:=func; [&+[(n-i+1)*A051682(i): i in [1..n]]: n in [1..35]]; // Bruno Berselli, Dec 07 2012
-
Table[(n+1)(n+2)(n+3)(9n+4)/24,{n,0,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,13,55,155,350},40] (* Harvey P. Dale, Aug 19 2012 *)
-
a(n)=(n+1)*(n+2)*(n+3)*(9*n+4)/24 \\ Charles R Greathouse IV, Oct 07 2015
A056003
a(n) = (n+1)*binomial(n+8, 8).
Original entry on oeis.org
1, 18, 135, 660, 2475, 7722, 21021, 51480, 115830, 243100, 481338, 906984, 1637610, 2848860, 4796550, 7845024, 12503007, 19468350, 29683225, 44401500, 65270205, 94427190, 134617275, 189329400, 262957500, 360988056, 490217508, 659002960, 877549860, 1158240600
Offset: 0
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Cf.
A093644 ((9, 1) Pascal, column m=9).
-
a056003 n = (n + 1) * a007318' (n + 8) 8
-- Reinhard Zumkeller, Aug 31 2014
-
a:=n->(sum((numbcomp(n,9)), j=9..n)):seq(a(n), n=9..35); # Zerinvary Lajos, Aug 26 2008
-
a[n_] := (n+1)*Binomial[n+8, 8]; Array[a, 50, 0] (* Amiram Eldar, Jan 15 2023 *)
-
a(n) = (n+1)*binomial(n+8, 8) \\ Charles R Greathouse IV, Oct 07 2015
Original entry on oeis.org
1, 15, 84, 308, 882, 2142, 4620, 9108, 16731, 29029, 48048, 76440, 117572, 175644, 255816, 364344, 508725, 697851, 942172, 1253868, 1647030, 2137850, 2744820, 3488940, 4393935, 5486481, 6796440, 8357104
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Cf.
A093644 ((9, 1) Pascal, column m=6).
-
List([0..40], n-> Binomial(n+5, 5)*(3*n+2)/2); # G. C. Greubel, Oct 30 2019
-
[Binomial(n+5, 5)*(3*n+2)/2: n in [0..40]]; // G. C. Greubel, Oct 30 2019
-
seq(binomial(n+5, 5)*(3*n+2)/2, n=0..40); # G. C. Greubel, Oct 30 2019
-
Accumulate[Accumulate[Table[(n+1)(n+2)(n+3)(9n+4)/24,{n,0,40}]]] (* Harvey P. Dale, Aug 19 2012 *)
-
vector(41, n, binomial(n+4, 5)*(3*n-1)/2) \\ G. C. Greubel, Oct 30 2019
-
[binomial(n+5, 5)*(3*n+2)/2 for n in (0..40)] # G. C. Greubel, Oct 30 2019
Original entry on oeis.org
1, 14, 69, 224, 574, 1260, 2478, 4488, 7623, 12298, 19019, 28392, 41132, 58072, 80172, 108528, 144381, 189126, 244321, 311696, 393162, 490820, 606970, 744120, 904995, 1092546, 1309959, 1560664
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-16.
Cf.
A093644((9, 1) Pascal, column m=5).
-
Accumulate[Table[(n+1)(n+2)(n+3)(9n+4)/24,{n,0,40}]] (* Harvey P. Dale, Aug 19 2012 *)
Original entry on oeis.org
1, 16, 100, 408, 1290, 3432, 8052, 17160, 33891, 62920, 110968, 187408, 304980, 480624, 736440, 1100784, 1609509, 2307360, 3249532, 4503400, 6150430, 8288280, 11033100, 14522040, 18915975
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- Murray R.Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
Cf.
A093644 ((9, 1) Pascal, column m=7).
-
LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,16,100,408,1290,3432,8052,17160},30] (* Harvey P. Dale, May 28 2018 *)
A056117
Expansion of (1+8*x)/(1-x)^9.
Original entry on oeis.org
1, 17, 117, 525, 1815, 5247, 13299, 30459, 64350, 127270, 238238, 425646, 730626, 1211250, 1947690, 3048474, 4657983, 6965343, 10214875, 14718275, 20868705, 29156985, 40190085, 54712125, 73628100, 98030556, 129229452, 168785452
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
List([0..30], n-> (9*n+8)*Binomial(n+7, 7)/8 ); # G. C. Greubel, Jan 18 2020
-
[(9*n+8)*Binomial(n+7, 7)/8: n in [0..30]]; // G. C. Greubel, Jan 18 2020
-
seq( (9*n+8)*binomial(n+7, 7)/8, n=0..30); # G. C. Greubel, Jan 18 2020
-
Table[9*Binomial[n+8,8] -8*Binomial[n+7,7], {n,0,30}] (* G. C. Greubel, Jan 18 2020 *)
LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,17,117,525,1815,5247,13299,30459,64350},30] (* Harvey P. Dale, Nov 23 2022 *)
-
vector(31, n, (9*n-1)*binomial(n+6, 7)/8) \\ G. C. Greubel, Jan 18 2020
-
[(9*n+8)*binomial(n+7, 7)/8 for n in (0..30)] # G. C. Greubel, Jan 18 2020
A172185
(9,11) Pascal triangle.
Original entry on oeis.org
1, 9, 11, 9, 20, 11, 9, 29, 31, 11, 9, 38, 60, 42, 11, 9, 47, 98, 102, 53, 11, 9, 56, 145, 200, 155, 64, 11, 9, 65, 201, 345, 355, 219, 75, 11, 9, 74, 266, 546, 700, 574, 294, 86, 11, 9, 83, 340, 812, 1246, 1274, 868, 380, 97, 11, 9, 92, 423, 1152, 2058, 2520, 2142, 1248, 477, 108, 11
Offset: 0
Triangle begins:
1;
9, 11;
9, 20, 11;
9, 29, 31, 11;
9, 38, 60, 42, 11;
9, 47, 98, 102, 53, 11;
9, 56, 145, 200, 155, 64, 11;
9, 65, 201, 345, 355, 219, 75, 11;
9, 74, 266, 546, 700, 574, 294, 86, 11;
9, 83, 340, 812, 1246, 1274, 868, 380, 97, 11;
9, 92, 423, 1152, 2058, 2520, 2142, 1248, 477, 108, 11;
-
T[n_, k_]:= If[n==0, 1, (9 + 2*k/n)*Binomial[n, k]]
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 28 2022 *)
-
def A172185(n,k): return 9*binomial(n,k) +2*binomial(n-1,k-1) -8*bool(n==0)
flatten([[A172185(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 28 2022
A172283
(-9,11) Pascal triangle.
Original entry on oeis.org
1, -9, 11, -9, 2, 11, -9, -7, 13, 11, -9, -16, 6, 24, 11, -9, -25, -10, 30, 35, 11, -9, -34, -35, 20, 65, 46, 11, -9, -43, -69, -15, 85, 111, 57, 11, -9, -52, -112, -84, 70, 196, 168, 68, 11, -9, -61, -164, -196, -14, 266, 364, 236, 79, 11
Offset: 0
Triangle begins:
1
-9, 11
-9, 2, 11
-9, -7, 13, 11
-9, -16, 6, 24, 11
Comments