cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A051798 a(n) = (n+1)*(n+2)*(n+3)*(9n+4)/24.

Original entry on oeis.org

1, 13, 55, 155, 350, 686, 1218, 2010, 3135, 4675, 6721, 9373, 12740, 16940, 22100, 28356, 35853, 44745, 55195, 67375, 81466, 97658, 116150, 137150, 160875, 187551, 217413, 250705, 287680, 328600, 373736, 423368, 477785, 537285
Offset: 0

Views

Author

Barry E. Williams, Dec 11 1999

Keywords

Comments

Partial sums of A007586.
Convolution of A000027 with A051682 (excluding 0). - Bruno Berselli, Dec 07 2012

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
  • Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
  • Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-8.

Crossrefs

Cf. A093644 ((9, 1) Pascal, column m=4).
Cf. A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.

Programs

Formula

a(n) = C(n+3, 3)*(9*n+4)/4.
G.f.: (1+8*x)/(1-x)^5.
a(0)=1, a(1)=13, a(2)=55, a(3)=155, a(4)=350, a(n)=5*a(n-1)- 10*a(n-2)+ 10*a(n-3)-5*a(n-4)+a(n-5). - Harvey P. Dale, Aug 19 2012
a(n) = A080852(9,n). - R. J. Mathar, Jul 28 2016

A056003 a(n) = (n+1)*binomial(n+8, 8).

Original entry on oeis.org

1, 18, 135, 660, 2475, 7722, 21021, 51480, 115830, 243100, 481338, 906984, 1637610, 2848860, 4796550, 7845024, 12503007, 19468350, 29683225, 44401500, 65270205, 94427190, 134617275, 189329400, 262957500, 360988056, 490217508, 659002960, 877549860, 1158240600
Offset: 0

Views

Author

Barry E. Williams, Jun 12 2000

Keywords

Comments

Original name: A second-order recursive sequence.

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Partial sums of A056117.
Cf. A093644 ((9, 1) Pascal, column m=9).
Cf. A000142, A007318, A052206, A245334, A254142 (partial sums).

Programs

  • Haskell
    a056003 n = (n + 1) * a007318' (n + 8) 8
    -- Reinhard Zumkeller, Aug 31 2014
    
  • Maple
    a:=n->(sum((numbcomp(n,9)), j=9..n)):seq(a(n), n=9..35); # Zerinvary Lajos, Aug 26 2008
  • Mathematica
    a[n_] := (n+1)*Binomial[n+8, 8]; Array[a, 50, 0] (* Amiram Eldar, Jan 15 2023 *)
  • PARI
    a(n) = (n+1)*binomial(n+8, 8) \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (1+8*x)/(1-x)^10.
a(n) = A245334(n+8,8)/A000142(8). - Reinhard Zumkeller, Aug 31 2014
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=0} 1/a(n) = 4*Pi^2/3 - 266681/22050.
Sum_{n>=0} (-1)^n/a(n) = 2*Pi^2/3 - 38656*log(2)/105 + 611409/2450. (End)

A050405 Partial sums of A051879.

Original entry on oeis.org

1, 15, 84, 308, 882, 2142, 4620, 9108, 16731, 29029, 48048, 76440, 117572, 175644, 255816, 364344, 508725, 697851, 942172, 1253868, 1647030, 2137850, 2744820, 3488940, 4393935, 5486481, 6796440, 8357104
Offset: 0

Views

Author

Barry E. Williams, Dec 21 1999

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Cf. A051879.
Cf. A093644 ((9, 1) Pascal, column m=6).

Programs

  • GAP
    List([0..40], n-> Binomial(n+5, 5)*(3*n+2)/2); # G. C. Greubel, Oct 30 2019
  • Magma
    [Binomial(n+5, 5)*(3*n+2)/2: n in [0..40]]; // G. C. Greubel, Oct 30 2019
    
  • Maple
    seq(binomial(n+5, 5)*(3*n+2)/2, n=0..40); # G. C. Greubel, Oct 30 2019
  • Mathematica
    Accumulate[Accumulate[Table[(n+1)(n+2)(n+3)(9n+4)/24,{n,0,40}]]] (* Harvey P. Dale, Aug 19 2012 *)
  • PARI
    vector(41, n, binomial(n+4, 5)*(3*n-1)/2) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [binomial(n+5, 5)*(3*n+2)/2 for n in (0..40)] # G. C. Greubel, Oct 30 2019
    

Formula

a(n) = binomial(n+5, 5)*(3*n + 2)/2.
G.f.: (1+8*x)/(1-x)^7.
E.g.f.: (240 +3360*x +6600*x^2 +4000*x^3 +950*x^4 +92*x^5 +3* x^6) *exp(x)/240. - G. C. Greubel, Oct 30 2019

Extensions

Corrected by T. D. Noe, Nov 09 2006

A051879 Partial sums of A051798.

Original entry on oeis.org

1, 14, 69, 224, 574, 1260, 2478, 4488, 7623, 12298, 19019, 28392, 41132, 58072, 80172, 108528, 144381, 189126, 244321, 311696, 393162, 490820, 606970, 744120, 904995, 1092546, 1309959, 1560664
Offset: 0

Views

Author

Barry E. Williams, Dec 14 1999

Keywords

Comments

Convolution of triangular numbers (A000217) and 11-gonal numbers (A051682). [Bruno Berselli, Jul 21 2015]

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
  • Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-16.

Crossrefs

Cf. A093644((9, 1) Pascal, column m=5).
Cf. A050405.

Programs

  • Mathematica
    Accumulate[Table[(n+1)(n+2)(n+3)(9n+4)/24,{n,0,40}]] (* Harvey P. Dale, Aug 19 2012 *)

Formula

a(n) = C(n+4, 4)*(9n+5)/5.
G.f.: (1+8*x)/(1-x)^6.

A052206 Partial sums of A050405.

Original entry on oeis.org

1, 16, 100, 408, 1290, 3432, 8052, 17160, 33891, 62920, 110968, 187408, 304980, 480624, 736440, 1100784, 1609509, 2307360, 3249532, 4503400, 6150430, 8288280, 11033100, 14522040, 18915975
Offset: 0

Views

Author

Barry E. Williams, Jan 28 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
  • Murray R.Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.

Crossrefs

Cf. A050405.
Cf. A093644 ((9, 1) Pascal, column m=7).

Programs

  • Mathematica
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,16,100,408,1290,3432,8052,17160},30] (* Harvey P. Dale, May 28 2018 *)

Formula

a(n) = (9n+7)*C(n+6, 6)/7.
G.f.: (1+8*x)/(1-x)^8.

A056117 Expansion of (1+8*x)/(1-x)^9.

Original entry on oeis.org

1, 17, 117, 525, 1815, 5247, 13299, 30459, 64350, 127270, 238238, 425646, 730626, 1211250, 1947690, 3048474, 4657983, 6965343, 10214875, 14718275, 20868705, 29156985, 40190085, 54712125, 73628100, 98030556, 129229452, 168785452
Offset: 0

Views

Author

Barry E. Williams, Jul 04 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Cf. A093644 ((9, 1) Pascal, column m=8). Partial sums of A052206.

Programs

  • GAP
    List([0..30], n-> (9*n+8)*Binomial(n+7, 7)/8 ); # G. C. Greubel, Jan 18 2020
  • Magma
    [(9*n+8)*Binomial(n+7, 7)/8: n in [0..30]]; // G. C. Greubel, Jan 18 2020
    
  • Maple
    seq( (9*n+8)*binomial(n+7, 7)/8, n=0..30); # G. C. Greubel, Jan 18 2020
  • Mathematica
    Table[9*Binomial[n+8,8] -8*Binomial[n+7,7], {n,0,30}] (* G. C. Greubel, Jan 18 2020 *)
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,17,117,525,1815,5247,13299,30459,64350},30] (* Harvey P. Dale, Nov 23 2022 *)
  • PARI
    vector(31, n, (9*n-1)*binomial(n+6, 7)/8) \\ G. C. Greubel, Jan 18 2020
    
  • Sage
    [(9*n+8)*binomial(n+7, 7)/8 for n in (0..30)] # G. C. Greubel, Jan 18 2020
    

Formula

a(n) = (9*n+8)*binomial(n+7, 7)/8.
G.f.: (1+8*x)/(1-x)^9.
From G. C. Greubel, Jan 18 2020: (Start)
a(n) = 9*binomial(n+8,8) - 8*binomial(n+7,7).
E.g.f.: (40320 + 645120*x + 1693440*x^2 + 1505280*x^3 + 588000*x^4 + 112896*x^5 + 10976*x^6 + 512*x^7 + 9*x^8)*exp(x)/40320. (End)

A172185 (9,11) Pascal triangle.

Original entry on oeis.org

1, 9, 11, 9, 20, 11, 9, 29, 31, 11, 9, 38, 60, 42, 11, 9, 47, 98, 102, 53, 11, 9, 56, 145, 200, 155, 64, 11, 9, 65, 201, 345, 355, 219, 75, 11, 9, 74, 266, 546, 700, 574, 294, 86, 11, 9, 83, 340, 812, 1246, 1274, 868, 380, 97, 11, 9, 92, 423, 1152, 2058, 2520, 2142, 1248, 477, 108, 11
Offset: 0

Views

Author

Mark Dols, Jan 28 2010

Keywords

Comments

Sums of NW-SE diagonals give A022114 (apart from first two terms).
Triangle T(n,k), read by rows, given by (9,-8,0,0,0,0,0,0,0,...) DELTA (11,-10,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 09 2011
Row n: Expansion of (9+11x)*(1+x)^(n-1), n > 0. - Philippe Deléham, Oct 09 2011

Examples

			Triangle begins:
  1;
  9, 11;
  9, 20,  11;
  9, 29,  31,   11;
  9, 38,  60,   42,   11;
  9, 47,  98,  102,   53,   11;
  9, 56, 145,  200,  155,   64,   11;
  9, 65, 201,  345,  355,  219,   75,   11;
  9, 74, 266,  546,  700,  574,  294,   86,  11;
  9, 83, 340,  812, 1246, 1274,  868,  380,  97,  11;
  9, 92, 423, 1152, 2058, 2520, 2142, 1248, 477, 108, 11;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= If[n==0, 1, (9 + 2*k/n)*Binomial[n, k]]
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 28 2022 *)
  • SageMath
    def A172185(n,k): return 9*binomial(n,k) +2*binomial(n-1,k-1) -8*bool(n==0)
    flatten([[A172185(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 28 2022

Formula

T(n,k) = T(n-1,k-1) + T(n-1,k) with T(0,0)=1, T(1,0)=9, T(1,1)=11. - Philippe Deléham, Oct 09 2011
G.f.: (1+8*x+10*y*x)/(1-x-y*x). - Philippe Deléham, Apr 13 2012
From G. C. Greubel, Apr 28 2022: (Start)
T(n, k) = 9*binomial(n, k) + 2*binomial(n-1, k-1) with T(0, 0) = 1.
Sum_{k=0..n} T(n, k) = 10*2^n - 9*[n=0]. (End)

Extensions

Corrected and extended by Philippe Deléham, Oct 09 2011

A172283 (-9,11) Pascal triangle.

Original entry on oeis.org

1, -9, 11, -9, 2, 11, -9, -7, 13, 11, -9, -16, 6, 24, 11, -9, -25, -10, 30, 35, 11, -9, -34, -35, 20, 65, 46, 11, -9, -43, -69, -15, 85, 111, 57, 11, -9, -52, -112, -84, 70, 196, 168, 68, 11, -9, -61, -164, -196, -14, 266, 364, 236, 79, 11
Offset: 0

Views

Author

Mark Dols, Jan 30 2010

Keywords

Comments

Triangle T(n,k), read by rows, given by [-9,10,0,0,0,0,0,0,0,...] DELTA [11,-10,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 01 2010

Examples

			Triangle begins:
               1
           -9,   11
        -9,    2,   11
     -9,   -7,   13,   11
  -9,  -16,    6,   24,   11
		

Crossrefs

Formula

With offset 0: Sum_{k=0..n} T(n,k) = 2^n. - Philippe Deléham, Feb 01 2010
T(n,k) = T(n-1,k-1) + T(n-1,k) with T(0,0)=1, T(1,0)=-9, T(1,1)=1. - Philippe Deléham, Oct 08 2011
G.f.: (1-10*x+10*y*x)/(1-x-y*x). - Philippe Deléham, Apr 13 2012

Extensions

More terms from Philippe Deléham, Oct 08 2011
Previous Showing 11-18 of 18 results.