cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A346983 Expansion of e.g.f. 1 / (5 - 4 * exp(x))^(1/4).

Original entry on oeis.org

1, 1, 6, 61, 891, 16996, 400251, 11217781, 364638336, 13486045291, 559192836771, 25691965808026, 1295521405067181, 71131584836353861, 4224255395774155566, 269791923787785076921, 18439806740525320993551, 1342957106015632474616956, 103824389511747541791086511
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 09 2021

Keywords

Comments

Stirling transform of A007696.

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n<2, 1, (4*n-3)*g(n-1)) end:
    b:= proc(n, m) option remember;
         `if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..18);  # Alois P. Heinz, Aug 09 2021
  • Mathematica
    nmax = 18; CoefficientList[Series[1/(5 - 4 Exp[x])^(1/4), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[StirlingS2[n, k] 4^k Pochhammer[1/4, k], {k, 0, n}], {n, 0, 18}]

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k) * A007696(k).
a(n) ~ n! / (Gamma(1/4) * 5^(1/4) * n^(3/4) * log(5/4)^(n + 1/4)). - Vaclav Kotesovec, Aug 14 2021
O.g.f. (conjectural): 1/(1 - x/(1 - 5*x/(1 - 5*x/(1 - 10*x/(1 - 9*x/(1 - 15*x/(1 - ... - (4*n-3)*x/(1 - 5*n*x/(1 - ... ))))))))) - a continued fraction of Stieltjes-type. - Peter Bala, Aug 22 2023
a(0) = 1; a(n) = Sum_{k=1..n} (4 - 3*k/n) * binomial(n,k) * a(n-k). - Seiichi Manyama, Sep 09 2023
a(0) = 1; a(n) = a(n-1) - 5*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 16 2023

A238464 Generalized ordered Bell numbers Bo(7,n).

Original entry on oeis.org

1, 7, 105, 2359, 70665, 2646007, 118893705, 6232661239, 373405001865, 25167452766967, 1884759251911305, 155262005162499319, 13952854271421949065, 1358385484966283220727, 142418920493123648992905, 15998363870912950298468599
Offset: 0

Views

Author

Vincenzo Librandi, Mar 17 2014

Keywords

Comments

Row 7 of array A094416, which has more information.

Crossrefs

Programs

  • Magma
    m:=20; R:=LaurentSeriesRing(RationalField(), m); b:=Coefficients(R!(1/(8 - 7*Exp(x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // Bruno Berselli, Mar 17 2014
    
  • Mathematica
    t=30; Range[0, t]! CoefficientList[Series[1/(8 - 7 Exp[x]), {x, 0, t}], x]
  • PARI
    x='x+O('x^66); Vec(serlaplace(1/(8 - 7*exp(x)))) \\ Joerg Arndt, Mar 17 2014

Formula

E.g.f.: 1/(8 - 7*exp(x)).
a(n) ~ n! / (8*(log(8/7))^(n+1)). - Vaclav Kotesovec, Mar 20 2014
a(0) = 1; a(n) = 7*a(n-1) - 8*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 17 2023

A090357 G.f. satisfies A^5 = BINOMIAL(A)^4; also equals A090356^4.

Original entry on oeis.org

1, 4, 26, 244, 3131, 52600, 1111940, 28559320, 865622825, 30250881420, 1196941704454, 52860066623036, 2576115583371739, 137274420821505776, 7937914900025008984, 494941882189888642832, 33096552232229291234923
Offset: 0

Views

Author

Paul D. Hanna, Nov 26 2003

Keywords

Comments

See comments in A090356.

Crossrefs

Programs

  • Mathematica
    nmax = 16; sol = {a[0] -> 1};
    Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x]^5 - A[x/(1 - x)]^4/(1 - x)^4 + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
    sol /. Rule -> Set;
    a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
  • PARI
    {a(n)=local(A); if(n<1,0,A=1+x+x*O(x^n); for(k=1,n,B=subst(A,x,x/(1-x))/(1-x)+x*O(x^n); A=A-A^5+B^4);polcoeff(A,n,x))}

Formula

G.f.: A(x)^5 = A(x/(1-x))^4/(1-x)^4.
From Peter Bala, May 26 2015: (Start)
O.g.f.: A(x) = exp( Sum_{n >= 1} b(n)*x^n/n ), where b(n) = Sum_{k = 1..n} k!*Stirling2(n,k)*4^k = A094417(n) = 4*A050353(n) for n >= 1.
BINOMIAL(A(x)) = exp( Sum_{n >= 1} c(n)*x^n/n ) where c(n) = (-1)^n*Sum_{k = 1..n} k!*Stirling2(n,k)*(-5)^k = A201365(n) = 5*A050353(n) for n >= 1.
A(x) = B(x)^4 and BINOMIAL(A(x)) = B(x)^5 where B(x) = 1 + x + 5*x^2 + 45*x^3 + 495*x^4 + ... is the o.g.f. for A090356. See also A019538. (End)
G.f.: Product_{k>=1} 1/(1 - k*x)^((1/5) * (4/5)^k). - Seiichi Manyama, May 26 2025
a(n) ~ (n-1)! / (5 * log(5/4)^(n+1)). - Vaclav Kotesovec, May 28 2025

A344735 a(0) = 1; a(n) = 4 * Sum_{k=1..n} binomial(n,k) * a(k-1).

Original entry on oeis.org

1, 4, 24, 156, 1120, 8740, 73384, 657900, 6259184, 62876852, 664134968, 7349666684, 84956020864, 1023006054980, 12802727760840, 166174971580684, 2232866214809360, 31007771007956948, 444360490882720344, 6562410784684023452, 99749853821538893216, 1558780425524233360740
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = 4 Sum[Binomial[n, k] a[k - 1], {k, 1, n}]; Table[a[n], {n, 0, 21}]
    nmax = 21; A[] = 0; Do[A[x] = 1 + 4 x A[x/(1 - x)]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + 4 * x * A(x/(1 - x)) / (1 - x)^2.

A355112 Expansion of e.g.f. 4 / (5 - 4*x - exp(4*x)).

Original entry on oeis.org

1, 2, 12, 112, 1376, 21056, 386688, 8286720, 202958848, 5592199168, 171203895296, 5765504860160, 211811563929600, 8429932686999552, 361312700788375552, 16592261047219388416, 812749365813312487424, 42299637489384965537792, 2330989060564353634271232
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 18; CoefficientList[Series[4/(5 - 4 x - Exp[4 x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = n a[n - 1] + Sum[Binomial[n, k] 4^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]

Formula

a(0) = 1; a(n) = n * a(n-1) + Sum_{k=1..n} binomial(n,k) * 4^(k-1) * a(n-k).
a(n) ~ n! / ((1 + LambertW(exp(5))) * ((5 - LambertW(exp(5)))/4)^(n+1)). - Vaclav Kotesovec, Jun 19 2022

A344499 T(n, k) = F(n - k, k), where F(n, x) is the Fubini polynomial. Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 13, 10, 3, 1, 0, 75, 74, 21, 4, 1, 0, 541, 730, 219, 36, 5, 1, 0, 4683, 9002, 3045, 484, 55, 6, 1, 0, 47293, 133210, 52923, 8676, 905, 78, 7, 1, 0, 545835, 2299754, 1103781, 194404, 19855, 1518, 105, 8, 1, 0, 7087261, 45375130, 26857659, 5227236, 544505, 39390, 2359, 136, 9, 1
Offset: 0

Views

Author

Peter Luschny, May 21 2021

Keywords

Comments

The array rows are recursively generated by applying the Akiyama-Tanigawa algorithm to the powers (see the Python implementation below). In this way the array becomes the image of A004248 under the AT-transformation when applied to the columns of A004248. This makes the array closely linked to A371761, which is generated in the same way, but applied to the rows of A004248. - Peter Luschny, Apr 27 2024

Examples

			Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1,      1;
[3] 0, 3,      2,       1;
[4] 0, 13,     10,      3,       1;
[5] 0, 75,     74,      21,      4,      1;
[6] 0, 541,    730,     219,     36,     5,     1;
[7] 0, 4683,   9002,    3045,    484,    55,    6,    1;
[8] 0, 47293,  133210,  52923,   8676,   905,   78,   7,   1;
[9] 0, 545835, 2299754, 1103781, 194404, 19855, 1518, 105, 8, 1;
.
Seen as an array A(n, k) = T(n + k, n):
[0] [1, 0,   0,    0,     0,       0,         0, ...  A000007
[1] [1, 1,   3,   13,    75,     541,      4683, ...  A000670
[2] [1, 2,  10,   74,   730,    9002,    133210, ...  A004123
[3] [1, 3,  21,  219,  3045,   52923,   1103781, ...  A032033
[4] [1, 4,  36,  484,  8676,  194404,   5227236, ...  A094417
[5] [1, 5,  55,  905, 19855,  544505,  17919055, ...  A094418
[6] [1, 6,  78, 1518, 39390, 1277646,  49729758, ...  A094419
[7] [1, 7, 105, 2359, 70665, 2646007, 118893705, ...  A238464
		

Crossrefs

Variant of the array is A094416 (which has column 0 and row 0 missing).
The coefficients of the Fubini polynomials are A131689.
Cf. A094420 (main diagonal of array), A372346 (row sums), A004248, A371761.

Programs

  • Maple
    F := proc(n) option remember; if n = 0 then return 1 fi:
    expand(add(binomial(n, k)*F(n - k)*x, k = 1..n)) end:
    seq(seq(subs(x = k, F(n - k)), k = 0..n), n = 0..10);
  • Mathematica
    F[n_] := F[n] = If[n == 0, 1,
       Expand[Sum[Binomial[n, k]*F[n - k]*x, {k, 1, n}]]];
    Table[Table[F[n - k] /. x -> k, {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jun 06 2024, after Peter Luschny *)
  • SageMath
    # Computes the triangle.
    @cached_function
    def F(n):
        R. = PolynomialRing(ZZ)
        if n == 0: return R(1)
        return R(sum(binomial(n, k)*F(n - k)*x for k in (1..n)))
    def Fval(n): return [F(n - k).substitute(x = k) for k in (0..n)]
    for n in range(10): print(Fval(n))
    
  • SageMath
    # Computes the square array using the Akiyama-Tanigawa algorithm.
    def ATFubini(n, len):
        A = [0] * len
        R = [0] * len
        for k in range(len):
            R[k] = (n + 1)**k  # Chancing this to R[k] = k**n generates A371761.
            for j in range(k, 0, -1):
                R[j - 1] = j * (R[j] - R[j - 1])
            A[k] = R[0]
        return A
    for n in range(8): print([n], ATFubini(n, 7))  # Peter Luschny, Apr 27 2024

Formula

T(n, k) = (n - k)! * [x^(n - k)] (1 / (1 + k * (1 - exp(x)))).
T(2*n, n) = A094420(n).

A238465 Generalized ordered Bell numbers Bo(8,n).

Original entry on oeis.org

1, 8, 136, 3464, 117640, 4993928, 254396296, 15119104904, 1026912225160, 78468091562888, 6662087721342856, 622186077361470344, 63389713864392140680, 6996476832548305415048, 831619554631233264449416, 105909083171031626820475784
Offset: 0

Views

Author

Vincenzo Librandi, Mar 18 2014

Keywords

Comments

Row 8 of array A094416, which has more information.

Crossrefs

Programs

  • Magma
    m:=20; R:=LaurentSeriesRing(RationalField(), m); b:=Coefficients(R!(1/(9 - 8*Exp(x)))); [Factorial(n-1)*b[n]: n in [1..m]];
  • Mathematica
    t = 30; Range[0, t]! CoefficientList[Series[1/(9 - 8 Exp[x]), {x, 0, t}], x]

Formula

E.g.f.: 1/(9 - 8*exp(x)).
a(n) ~ n! / (9*(log(9/8))^(n+1)). - Vaclav Kotesovec, Mar 20 2014
a(0) = 1; a(n) = 8*a(n-1) - 9*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 17 2023

A354147 Expansion of e.g.f. 1/(1 - 4 * log(1+x)).

Original entry on oeis.org

1, 4, 28, 296, 4168, 73376, 1550048, 38202048, 1076017344, 34096092672, 1200459182592, 46492497859584, 1964295942558720, 89906908894150656, 4431634108980264960, 234044235939806232576, 13184410813249253031936, 789137065405617987354624
Offset: 0

Views

Author

Seiichi Manyama, May 21 2022

Keywords

Crossrefs

Column k=4 of A320080.

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-4*log(1+x))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=4*sum(j=1, i, (-1)^(j-1)*(j-1)!*binomial(i, j)*v[i-j+1])); v;
    
  • PARI
    a(n) = sum(k=0, n, 4^k*k!*stirling(n, k, 1));

Formula

a(0) = 1; a(n) = 4 * Sum_{k=1..n} (-1)^(k-1) * (k-1)! * binomial(n,k) * a(n-k).
a(n) = Sum_{k=0..n} 4^k * k! * Stirling1(n, k).
a(n) ~ n! * exp(1/4) / (4 * (exp(1/4)-1)^(n+1)). - Vaclav Kotesovec, Jun 04 2022

A354264 Expansion of e.g.f. 1/(1 + 4 * log(1-x)).

Original entry on oeis.org

1, 4, 36, 488, 8824, 199456, 5410208, 171209664, 6192052800, 251937937920, 11389639660032, 566394573855744, 30726758349800448, 1805828538127687680, 114293350061315678208, 7750480651439579529216, 560615413313367534698496, 43085423893717998388740096
Offset: 0

Views

Author

Seiichi Manyama, May 21 2022

Keywords

Crossrefs

Column k=4 of A320079.

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1+4*log(1-x))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=4*sum(j=1, i, (j-1)!*binomial(i, j)*v[i-j+1])); v;
    
  • PARI
    a(n) = sum(k=0, n, 4^k*k!*abs(stirling(n, k, 1)));

Formula

E.g.f.: 1/(1 + 4 * log(1-x)).
a(0) = 1; a(n) = 4 * Sum_{k=1..n} (k-1)! * binomial(n,k) * a(n-k).
a(n) = Sum_{k=0..n} 4^k * k! * |Stirling1(n, k)|.
a(n) ~ n! * exp(n/4) / (4 * (exp(1/4) - 1)^(n+1)). - Vaclav Kotesovec, Jun 04 2022

A384326 Expansion of Product_{k>=1} 1/(1 - k*x)^((4/5)^k).

Original entry on oeis.org

1, 20, 290, 3940, 55695, 872904, 15862460, 343510120, 8931896095, 276115329860, 9954870557826, 410042908659060, 18954497571869745, 969420292296268320, 54253252462944958560, 3293672518482920204544, 215400856153695252763320, 15088195059520554250863840
Offset: 0

Views

Author

Seiichi Manyama, May 26 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 20; A[] = 1; Do[A[x] = -4*A[x] + 5*A[x/(1-x)]^(4/5) / (1-x)^4 + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Vaclav Kotesovec, May 27 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(exp(5*sum(k=1, N, sum(j=0, k, 4^j*j!*stirling(k, j, 2))*x^k/k)))

Formula

G.f. A(x) satisfies A(x) = A(x/(1-x))^(4/5) / (1-x)^4.
G.f.: exp(5 * Sum_{k>=1} A094417(k) * x^k/k).
G.f.: B(x)^20, where B(x) is the g.f. of A090356.
a(n) ~ (n-1)! / log(5/4)^(n+1). - Vaclav Kotesovec, May 27 2025
Previous Showing 11-20 of 27 results. Next