cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 93 results. Next

A357134 Take the k-th composition in standard order for each part k of the n-th composition in standard order; then set a(n) to be the index (in standard order) of the concatenation.

Original entry on oeis.org

0, 1, 2, 3, 3, 5, 6, 7, 4, 7, 10, 11, 7, 13, 14, 15, 5, 9, 14, 15, 11, 21, 22, 23, 12, 15, 26, 27, 15, 29, 30, 31, 6, 11, 18, 19, 15, 29, 30, 31, 20, 23, 42, 43, 23, 45, 46, 47, 13, 25, 30, 31, 27, 53, 54, 55, 28, 31, 58, 59, 31, 61, 62, 63, 7, 13, 22, 23, 19
Offset: 0

Views

Author

Gus Wiseman, Sep 24 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their corresponding standard compositions begin:
   0: ()
   1: (1)
   2: (2)
   3: (1,1)
   3: (1,1)
   5: (2,1)
   6: (1,2)
   7: (1,1,1)
   4: (3)
   7: (1,1,1)
  10: (2,2)
  11: (2,1,1)
   7: (1,1,1)
  13: (1,2,1)
  14: (1,1,2)
  15: (1,1,1,1)
		

Crossrefs

See link for sequences related to standard compositions.
The version for Heinz numbers of partitions is A003963.
The vertex-degrees are A048896.
The a(n)-th composition in standard order is row n of A357135.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[Join@@stc/@stc[n]],{n,0,30}]

Formula

For n > 0, the value n appears A048896(n - 1) times.
Row a(n) of A066099 = row n of A357135.

A368111 Least k such that there are exactly A003586(n) ways to choose a binary index of each binary index of k.

Original entry on oeis.org

1, 4, 64, 20, 68, 52, 1088, 84, 308, 1092, 116, 5184, 820, 1108, 372, 5188, 2868, 1140, 13376, 884, 5204, 17204, 1396, 13380, 2932, 5236, 275520, 19252, 1908, 13396, 17268, 5492, 275524, 84788, 3956, 13428, 1324096, 19316, 6004, 275540, 215860, 18292, 13684
Offset: 1

Views

Author

Gus Wiseman, Dec 17 2023

Keywords

Comments

A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.

Examples

			The terms together with the corresponding set-systems begin:
    1: {{1}}
    4: {{1,2}}
   64: {{1,2,3}}
   20: {{1,2},{1,3}}
   68: {{1,2},{1,2,3}}
   52: {{1,2},{1,3},{2,3}}
   84: {{1,2},{1,3},{1,2,3}}
  308: {{1,2},{1,3},{2,3},{1,4}}
  116: {{1,2},{1,3},{2,3},{1,2,3}}
  820: {{1,2},{1,3},{2,3},{1,4},{2,4}}
  372: {{1,2},{1,3},{2,3},{1,2,3},{1,4}}
  884: {{1,2},{1,3},{2,3},{1,2,3},{1,4},{2,4}}
		

Crossrefs

With distinctness we have A367910, sorted A367911, firsts of A367905.
For multisets we have A367913, sorted A367915, firsts of A367912.
Positions of first appearances in A368109.
The sorted version is A368112.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    nn=10000;
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    dd=Select[Range[nn],Max@@First/@FactorInteger[#]<=3&];
    qq=Table[Length[Tuples[bpe/@bpe[n]]],{n,nn}];
    kk=Select[Range[Length[dd]],SubsetQ[qq,Take[dd,#]]&]
    Table[Position[qq,dd[[n]]][[1,1]],{n,kk}]

A368112 Sorted positions of first appearances in A368109 (number of ways to choose a binary index of each binary index).

Original entry on oeis.org

1, 4, 20, 52, 64, 68, 84, 116, 308, 372, 820, 884, 1088, 1092, 1108, 1140, 1396, 1908, 2868, 2932, 3956, 5184, 5188, 5204, 5236, 5492, 6004, 8052, 13376, 13380, 13396, 13428, 13684, 14196, 16244, 17204, 17268, 18292, 19252, 19316, 20340, 22388, 24436, 30580
Offset: 1

Views

Author

Gus Wiseman, Dec 17 2023

Keywords

Comments

A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.

Examples

			The terms together with the corresponding set-systems begin:
    1: {{1}}
    4: {{1,2}}
   20: {{1,2},{1,3}}
   52: {{1,2},{1,3},{2,3}}
   64: {{1,2,3}}
   68: {{1,2},{1,2,3}}
   84: {{1,2},{1,3},{1,2,3}}
  116: {{1,2},{1,3},{2,3},{1,2,3}}
  308: {{1,2},{1,3},{2,3},{1,4}}
  372: {{1,2},{1,3},{2,3},{1,2,3},{1,4}}
  820: {{1,2},{1,3},{2,3},{1,4},{2,4}}
  884: {{1,2},{1,3},{2,3},{1,2,3},{1,4},{2,4}}
		

Crossrefs

For multisets we have A367915, unsorted A367913, firsts A367912.
Sorted positions of first appearances in A368109.
The unsorted version is A368111.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    c=Table[Length[Tuples[bpe/@bpe[n]]], {n,1000}];
    Select[Range[Length[c]], FreeQ[Take[c,#-1],c[[#]]]&]

A368533 Numbers whose binary indices are all squarefree.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23, 32, 33, 34, 35, 36, 37, 38, 39, 48, 49, 50, 51, 52, 53, 54, 55, 64, 65, 66, 67, 68, 69, 70, 71, 80, 81, 82, 83, 84, 85, 86, 87, 96, 97, 98, 99, 100, 101, 102, 103, 112, 113, 114, 115, 116, 117, 118, 119, 512
Offset: 1

Views

Author

Gus Wiseman, Mar 23 2024

Keywords

Comments

The complement first differs from A115419 in having 128.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The terms together with their binary expansions and binary indices begin:
    0:       0 ~ {}
    1:       1 ~ {1}
    2:      10 ~ {2}
    3:      11 ~ {1,2}
    4:     100 ~ {3}
    5:     101 ~ {1,3}
    6:     110 ~ {2,3}
    7:     111 ~ {1,2,3}
   16:   10000 ~ {5}
   17:   10001 ~ {1,5}
   18:   10010 ~ {2,5}
   19:   10011 ~ {1,2,5}
   20:   10100 ~ {3,5}
   21:   10101 ~ {1,3,5}
   22:   10110 ~ {2,3,5}
   23:   10111 ~ {1,2,3,5}
   32:  100000 ~ {6}
   33:  100001 ~ {1,6}
   34:  100010 ~ {2,6}
   35:  100011 ~ {1,2,6}
   36:  100100 ~ {3,6}
   37:  100101 ~ {1,3,6}
   38:  100110 ~ {2,3,6}
		

Crossrefs

Set multipartitions: A049311, A050320, A089259, A116540.
For prime indices instead of binary indices we have A302478.
The case of prime binary indices is A326782.
The case of squarefree product is A371289.
For prime-power product we have A371290.
For nonprime binary indices we have A371443, composite A371444.
The semiprime case is A371453, squarefree case of A371454.
A005117 lists squarefree numbers.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,100],And@@SquareFreeQ/@bpe[#]&]
  • Python
    from math import isqrt
    from sympy import mobius
    def A368533(n):
        def f(x,n): return int(n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))
        def A005117(n):
            m, k = n, f(n,n)
            while m != k: m, k = k, f(k,n)
            return m
        return sum(1<<A005117(i)-1 for i, j in enumerate(bin(n-1)[:1:-1],1) if j=='1') # Chai Wah Wu, Oct 24 2024

A370642 Number of minimal subsets of {1..n} such that it is not possible to choose a different binary index of each element.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 9, 26, 26, 40, 82, 175, 338, 636, 1114
Offset: 0

Views

Author

Gus Wiseman, Mar 10 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(0) = 0 through a(6) = 9 subsets:
  .  .  .  {1,2,3}  {1,2,3}  {1,2,3}    {1,2,3}
                             {1,4,5}    {1,4,5}
                             {2,3,4,5}  {2,4,6}
                                        {1,2,5,6}
                                        {1,3,4,6}
                                        {1,3,5,6}
                                        {2,3,4,5}
                                        {2,3,5,6}
                                        {3,4,5,6}
		

Crossrefs

For prime indices we have A370591, minima of A370583, complement A370582.
This is the minimal case of A370637, complement A370636.
The version for a unique choice is A370638, maxima A370640, diffs A370641.
The case without ones is A370644.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A368100 ranks choosable multisets, complement A355529.
A370585 counts maximal choosable sets.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    fasmin[y_]:=Complement[y,Union@@Table[Union[s,#]& /@ Rest[Subsets[Complement[Union@@y,s]]],{s,y}]];
    Table[Length[fasmin[Select[Subsets[Range[n]], Select[Tuples[bpe/@#],UnsameQ@@#&]=={}&]]],{n,0,10}]

A371291 Numbers whose binary indices are connected, where two numbers are connected iff they have a common factor.

Original entry on oeis.org

1, 2, 4, 8, 10, 16, 32, 34, 36, 38, 40, 42, 44, 46, 64, 128, 130, 136, 138, 160, 162, 164, 166, 168, 170, 172, 174, 256, 260, 288, 290, 292, 294, 296, 298, 300, 302, 416, 418, 420, 422, 424, 426, 428, 430, 512, 514, 520, 522, 528, 530, 536, 538, 544, 546, 548
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
The empty set is not considered connected.

Examples

			The terms together with their binary expansions and binary indices begin:
    1:          1 ~ {1}
    2:         10 ~ {2}
    4:        100 ~ {3}
    8:       1000 ~ {4}
   10:       1010 ~ {2,4}
   16:      10000 ~ {5}
   32:     100000 ~ {6}
   34:     100010 ~ {2,6}
   36:     100100 ~ {3,6}
   38:     100110 ~ {2,3,6}
   40:     101000 ~ {4,6}
   42:     101010 ~ {2,4,6}
   44:     101100 ~ {3,4,6}
   46:     101110 ~ {2,3,4,6}
   64:    1000000 ~ {7}
  128:   10000000 ~ {8}
  130:   10000010 ~ {2,8}
  136:   10001000 ~ {4,8}
  138:   10001010 ~ {2,4,8}
  160:   10100000 ~ {6,8}
  162:   10100010 ~ {2,6,8}
  164:   10100100 ~ {3,6,8}
		

Crossrefs

For prime indices of each prime index we have A305078.
The opposite version is A325118.
For binary indices of each binary index we have A326749.
The pairwise indivisible case is A371294, opposite A371445.
Positions of ones in A371452.
A001187 counts connected graphs.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A087086 lists numbers whose binary indices are pairwise indivisible.
A096111 gives product of binary indices.
A326964 counts connected set-systems, covering A323818.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,1000],Length[csm[prix/@bpe[#]]]==1&]

A368183 Number of sets that can be obtained by choosing a different binary index of each binary index of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 2, 1, 2, 1, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 2, 1, 1, 3, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 3, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 2, 2, 1, 3, 1, 1, 0, 2, 1, 1, 0, 1, 0, 0, 0, 3, 1, 1, 0, 1, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Dec 17 2023

Keywords

Comments

A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.

Examples

			The binary indices of binary indices of 52 are {{1,2},{1,3},{2,3}}, with choices (1,3,2), (2,1,3), both permutations of {1,2,3}, so a(52) = 1.
		

Crossrefs

For sequences we have A367905, firsts A367910, sorted A367911.
Positions of zeros are A367907.
Without distinctness we have A367912, firsts A367913, sorted A367915.
Positions of positive terms are A367906.
For sequences without distinctness: A368109, firsts A368111, sorted A368112.
Positions of first appearances are A368184, sorted A368185.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Union[Sort/@Select[Tuples[bpe/@bpe[n]],UnsameQ@@#&]]],{n,0,100}]

A370641 Number of maximal subsets of {1..n} containing n such that it is possible to choose a different binary index of each element.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 9, 15, 32, 45, 67, 98, 141, 197, 263, 358, 1201, 1493, 1920, 2482, 3123, 3967, 4884, 6137, 7584, 9369, 11169, 13664, 15818, 19152, 22418, 26905, 151286, 173409, 202171, 237572, 273651, 320040, 367792, 428747, 485697, 562620, 637043, 734738, 815492
Offset: 0

Views

Author

Gus Wiseman, Mar 11 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
Also choices of A070939(n) elements of {1..n} containing n such that it is possible to choose a different binary index of each.

Examples

			The a(0) = 0 through a(7) = 15 subsets:
  .  {1}  {1,2}  {1,3}  {1,2,4}  {1,2,5}  {1,2,6}  {1,2,7}
                 {2,3}  {1,3,4}  {1,3,5}  {1,3,6}  {1,3,7}
                        {2,3,4}  {2,3,5}  {1,4,6}  {1,4,7}
                                 {2,4,5}  {1,5,6}  {1,5,7}
                                 {3,4,5}  {2,3,6}  {1,6,7}
                                          {2,5,6}  {2,3,7}
                                          {3,4,6}  {2,4,7}
                                          {3,5,6}  {2,5,7}
                                          {4,5,6}  {2,6,7}
                                                   {3,4,7}
                                                   {3,5,7}
                                                   {3,6,7}
                                                   {4,5,7}
                                                   {4,6,7}
                                                   {5,6,7}
		

Crossrefs

A version for set-systems is A368601.
For prime indices we have A370590, without n A370585, see also A370591.
This is the maximal case of A370636 requiring n, complement A370637.
This is the maximal case of A370639, complement A370589.
Without requiring n we have A370640.
Dominated by A370819.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n],{IntegerLength[n,2]}],MemberQ[#,n] && Length[Union[Sort/@Select[Tuples[bpe/@#], UnsameQ@@#&]]]>0&]],{n,0,25}]

Extensions

More terms from Jinyuan Wang, Mar 28 2025

A371294 Numbers whose binary indices are connected and pairwise indivisible, where two numbers are connected iff they have a common factor. A hybrid ranking sequence for connected antichains of multisets.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 40, 64, 128, 160, 256, 288, 296, 416, 512, 520, 544, 552, 640, 672, 800, 808, 928, 1024, 2048, 2176, 2304, 2432, 2560, 2688, 2816, 2944, 4096, 8192, 8200, 8224, 8232, 8320, 8352, 8480, 8488, 8608, 8704, 8712, 8736, 8744, 8832, 8864, 8992
Offset: 1

Views

Author

Gus Wiseman, Mar 28 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The terms together with their prime indices of binary indices begin:
    1: {{}}
    2: {{1}}
    4: {{2}}
    8: {{1,1}}
   16: {{3}}
   32: {{1,2}}
   40: {{1,1},{1,2}}
   64: {{4}}
  128: {{1,1,1}}
  160: {{1,2},{1,1,1}}
  256: {{2,2}}
  288: {{1,2},{2,2}}
  296: {{1,1},{1,2},{2,2}}
  416: {{1,2},{1,1,1},{2,2}}
  512: {{1,3}}
  520: {{1,1},{1,3}}
  544: {{1,2},{1,3}}
  552: {{1,1},{1,2},{1,3}}
  640: {{1,1,1},{1,3}}
  672: {{1,2},{1,1,1},{1,3}}
  800: {{1,2},{2,2},{1,3}}
  808: {{1,1},{1,2},{2,2},{1,3}}
  928: {{1,2},{1,1,1},{2,2},{1,3}}
		

Crossrefs

Connected case of A087086, relatively prime A328671.
For binary indices of binary indices we have A326750, non-primitive A326749.
For prime indices of prime indices we have A329559, non-primitive A305078.
Primitive case of A371291 = positions of ones in A371452.
For binary indices of prime indices we have A371445, non-primitive A325118.
A001187 counts connected graphs.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326964 counts connected set-systems, covering A323818.

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],stableQ[bpe[#],Divisible]&&connectedQ[prix/@bpe[#]]&]

Formula

Intersection of A087086 and A371291.

A372432 Positive integers k such that the prime indices of k are not disjoint from the binary indices of k.

Original entry on oeis.org

3, 5, 6, 14, 15, 18, 20, 22, 27, 28, 30, 39, 42, 45, 51, 52, 54, 55, 56, 60, 63, 66, 68, 70, 75, 77, 78, 85, 87, 88, 90, 91, 95, 99, 100, 102, 104, 105, 110, 111, 114, 117, 119, 121, 123, 125, 126, 133, 135, 138, 140, 147, 150, 152, 154, 159, 162, 165, 168
Offset: 1

Views

Author

Gus Wiseman, May 03 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The binary indices of 18 are {2,5}, and the prime indices are {1,2,2}, so 18 is in the sequence.
The terms together with their prime indices begin:
    3: {2}
    5: {3}
    6: {1,2}
   14: {1,4}
   15: {2,3}
   18: {1,2,2}
   20: {1,1,3}
   22: {1,5}
   27: {2,2,2}
   28: {1,1,4}
   30: {1,2,3}
The terms together with their binary expansions and binary indices begin:
    3:      11 ~ {1,2}
    5:     101 ~ {1,3}
    6:     110 ~ {2,3}
   14:    1110 ~ {2,3,4}
   15:    1111 ~ {1,2,3,4}
   18:   10010 ~ {2,5}
   20:   10100 ~ {3,5}
   22:   10110 ~ {2,3,5}
   27:   11011 ~ {1,2,4,5}
   28:   11100 ~ {3,4,5}
   30:   11110 ~ {2,3,4,5}
		

Crossrefs

For subset instead of overlap we have A372430.
The complement is A372431.
Equal lengths: A071814, zeros of A372441.
Equal sums: A372427, zeros of A372428.
Equal maxima: A372436, zeros of A372442.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[bix[#],prix[#]]!={}&]
Previous Showing 41-50 of 93 results. Next