cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A368185 Sorted list of positions of first appearances in A368183 (number of sets that can be obtained by choosing a different binary index of each binary index).

Original entry on oeis.org

1, 4, 7, 20, 276, 320, 1088, 65856, 66112, 66624
Offset: 1

Views

Author

Gus Wiseman, Dec 18 2023

Keywords

Comments

A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.

Examples

			The terms together with the corresponding set-systems begin:
      1: {{1}}
      4: {{1,2}}
      7: {{1},{2},{1,2}}
     20: {{1,2},{1,3}}
    276: {{1,2},{1,3},{1,4}}
    320: {{1,2,3},{1,4}}
   1088: {{1,2,3},{1,2,4}}
  65856: {{1,2,3},{1,4},{1,5}}
  66112: {{1,2,3},{2,4},{1,5}}
  66624: {{1,2,3},{1,2,4},{1,5}}
		

Crossrefs

For sequences we have A367911, unsorted A367910, firsts of A367905.
Multisets w/o distinctness: A367915, unsorted A367913, firsts of A367912.
Sequences w/o distinctness: A368112, unsorted A368111, firsts of A368109.
Sorted list of positions of first appearances in A368183.
The unsorted version is A368184.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    c=Table[Length[Union[Sort/@Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]]],{n,1000}];
    Select[Range[Length[c]], FreeQ[Take[c,#-1],c[[#]]]&]

A367912 Number of multisets that can be obtained by choosing a binary index of each binary index of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 7, 7, 7, 7, 4, 4, 4, 4, 7, 7, 7, 7, 3, 3, 3, 3, 5, 5, 5, 5, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 8, 8, 8, 8
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2023

Keywords

Comments

A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
The run-lengths are all 4 or 8.

Examples

			The binary indices of binary indices of 52 are {{1,2},{1,3},{2,3}}, with multiset choices {1,1,2}, {1,1,3}, {1,2,2}, {1,2,3}, {1,3,3}, {2,2,3}, {2,3,3}, so a(52) = 7.
		

Crossrefs

Positions of ones are A253317.
The version for multisets and divisors is A355733, for sequences A355731.
The version for multisets is A355744, for sequences A355741.
For a sequence of distinct choices we have A367905, firsts A367910.
Positions of first appearances are A367913, sorted A367915.
Choosing a sequence instead of multiset gives A368109, firsts A368111.
Choosing a set instead of multiset gives A368183, firsts A368184.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]],1];
    Table[Length[Union[Sort/@Tuples[bpe/@bpe[n]]]], {n,0,100}]

A253317 Indices in A261283 where records occur.

Original entry on oeis.org

0, 1, 2, 3, 8, 9, 10, 11, 128, 129, 130, 131, 136, 137, 138, 139, 32768, 32769, 32770, 32771, 32776, 32777, 32778, 32779, 32896, 32897, 32898, 32899, 32904, 32905, 32906, 32907, 2147483648, 2147483649, 2147483650, 2147483651, 2147483656, 2147483657
Offset: 1

Views

Author

Philippe Beaudoin, Dec 30 2014

Keywords

Comments

From Gus Wiseman, Dec 29 2023: (Start)
These are numbers whose binary indices are all powers of 2, where a binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, the terms together with their binary expansions and binary indices begin:
0: 0 ~ {}
1: 1 ~ {1}
2: 10 ~ {2}
3: 11 ~ {1,2}
8: 1000 ~ {4}
9: 1001 ~ {1,4}
10: 1010 ~ {2,4}
11: 1011 ~ {1,2,4}
128: 10000000 ~ {8}
129: 10000001 ~ {1,8}
130: 10000010 ~ {2,8}
131: 10000011 ~ {1,2,8}
136: 10001000 ~ {4,8}
137: 10001001 ~ {1,4,8}
138: 10001010 ~ {2,4,8}
139: 10001011 ~ {1,2,4,8}
For powers of 3 we have A368531.
(End)

Crossrefs

Cf. A053644 (most significant bit).
A048793 lists binary indices, length A000120, sum A029931.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Maple
    a := proc(n) local k, A:
    A := [seq(0,i=1..n)]: A[1]:=0:
    for k from 1 to n-1 do
       A[k+1] := A[k-2^ilog2(k)+1]+2^(2^ilog2(k)-1): od:
    return A[n]: end proc: # Lorenzo Sauras Altuzarra, Dec 18 2019
    # second Maple program:
    a:= n-> (l-> add(l[i+1]*2^(2^i-1), i=0..nops(l)-1))(Bits[Split](n-1)):
    seq(a(n), n=1..38);  # Alois P. Heinz, Dec 13 2023
  • Mathematica
    Nest[Append[#1, #1[[-#2]] + 2^(#2 - 1)] & @@ {#, 2^(IntegerLength[Length[#], 2] - 1)} &, {0, 1}, 36] (* Michael De Vlieger, May 08 2020 *)
  • PARI
    a(n)={if(n<=1, 0, my(t=1<Andrew Howroyd, Dec 20 2019

Formula

a(1) = 0 and a(n) = a(n-A053644(n-1)) + 2^(A053644(n-1)-1). - Lorenzo Sauras Altuzarra, Dec 18 2019
a(n) = A358126(n-1) / 2. - Tilman Piesk, Dec 18 2022
a(2^n+1) = 2^(2^n-1) = A058891(n+1). - Gus Wiseman, Dec 29 2023
a(2^n) = A072639(n). - Gus Wiseman, Dec 29 2023
G.f.: 1/(1-x) * Sum_{k>=0} (2^(-1+2^k))*x^2^k/(1+x^2^k). - John Tyler Rascoe, May 22 2024

Extensions

Corrected reference in name from A253315 to A261283. - Tilman Piesk, Dec 18 2022

A367911 Sorted positions of first appearances in A367905.

Original entry on oeis.org

1, 4, 7, 20, 68, 320, 352, 1088, 3136, 5184, 13376, 16704, 17472, 70720, 82240, 83008, 90112, 90176
Offset: 1

Views

Author

Gus Wiseman, Dec 16 2023

Keywords

Comments

A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.

Examples

			The terms together with the corresponding set-systems begin:
      1: {{1}}
      4: {{1,2}}
      7: {{1},{2},{1,2}}
     20: {{1,2},{1,3}}
     68: {{1,2},{1,2,3}}
    320: {{1,2,3},{1,4}}
    352: {{2,3},{1,2,3},{1,4}}
   1088: {{1,2,3},{1,2,4}}
   3136: {{1,2,3},{1,2,4},{3,4}}
   5184: {{1,2,3},{1,2,4},{1,3,4}}
  13376: {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  16704: {{1,2,3},{1,4},{1,2,3,4}}
  17472: {{1,2,3},{1,2,4},{1,2,3,4}}
  70720: {{1,2,3},{1,2,4},{1,3,4},{1,5}}
  82240: {{1,2,3},{1,4},{1,2,3,4},{1,5}}
		

Crossrefs

Sorted positions of first appearances in A367905.
The unsorted version is A367910.
Multisets without distinctness are A367915, unsorted A367913.
Without distinctness we have A368112, unsorted A368111.
For sets instead of sequences we have A368185, unsorted A368184.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    c=Table[Length[Select[Tuples[bpe/@bpe[n]],UnsameQ@@#&]],{n,1000}];
    Select[Range[Length[c]],FreeQ[Take[c,#-1],c[[#]]]&]

A367910 Least number k such that there are exactly n ways to choose a different binary index of each binary index of k.

Original entry on oeis.org

7, 1, 4, 20, 68, 320, 352, 1088, 3136, 13376, 16704, 5184, 82240, 70720, 17472
Offset: 0

Views

Author

Gus Wiseman, Dec 16 2023

Keywords

Comments

A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.

Examples

			The terms together with the corresponding set-systems begin:
      7: {{1},{2},{1,2}}
      1: {{1}}
      4: {{1,2}}
     20: {{1,2},{1,3}}
     68: {{1,2},{1,2,3}}
    320: {{1,2,3},{1,4}}
    352: {{2,3},{1,2,3},{1,4}}
   1088: {{1,2,3},{1,2,4}}
   3136: {{1,2,3},{1,2,4},{3,4}}
  13376: {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  16704: {{1,2,3},{1,4},{1,2,3,4}}
   5184: {{1,2,3},{1,2,4},{1,3,4}}
  82240: {{1,2,3},{1,4},{1,2,3,4},{1,5}}
  70720: {{1,2,3},{1,2,4},{1,3,4},{1,5}}
		

Crossrefs

Positions of first appearances in A367905.
The sorted version is A367911.
For multisets w/o distinctness: A367913, firsts of A367912, sorted A367915.
Not requiring distinctness gives A368111, firsts of A368109, sorted A368112.
For multisets of indices we have A368184, firsts of A368183, sorted A368185.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    c=Table[Length[Select[Tuples[bpe/@bpe[n]],UnsameQ@@#&]],{n,1000}];
    spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&];
    Table[Position[c,n][[1,1]],{n,0,spnm[c]}]

A367913 Least number k such that there are exactly n ways to choose a multiset consisting of a binary index of each binary index of k.

Original entry on oeis.org

1, 4, 64, 20, 68, 320, 52, 84, 16448, 324, 832, 116, 1104, 308, 816, 340, 836, 848, 1108, 1136, 1360, 3152, 16708, 372, 5188, 5216, 852, 880, 2884, 1364, 13376, 1392, 3184, 3424, 17220, 5204, 5220, 2868, 5728, 884, 19536, 66896, 2900, 1396, 21572, 3188, 3412
Offset: 1

Views

Author

Gus Wiseman, Dec 16 2023

Keywords

Comments

A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.

Examples

			The terms together with the corresponding set-systems begin:
      1: {{1}}
      4: {{1,2}}
     64: {{1,2,3}}
     20: {{1,2},{1,3}}
     68: {{1,2},{1,2,3}}
    320: {{1,2,3},{1,4}}
     52: {{1,2},{1,3},{2,3}}
     84: {{1,2},{1,3},{1,2,3}}
  16448: {{1,2,3},{1,2,3,4}}
    324: {{1,2},{1,2,3},{1,4}}
    832: {{1,2,3},{1,4},{2,4}}
    116: {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

A version for multisets and divisors is A355734.
With distinctness we have A367910, firsts of A367905, sorted A367911.
Positions of first appearances in A367912.
The sorted version is A367915.
For sequences we have A368111, firsts of A368109, sorted A368112.
For sets we have A368184, firsts of A368183, sorted A368185.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&];
    c=Table[Length[Union[Sort/@Tuples[bpe/@bpe[n]]]],{n,1000}];
    Table[Position[c,n][[1,1]],{n,spnm[c]}]

A368184 Least k such that there are exactly n ways to choose a set consisting of a different binary index of each binary index of k.

Original entry on oeis.org

7, 1, 4, 20, 276, 320, 1088, 65856, 66112, 66624, 263232
Offset: 0

Views

Author

Gus Wiseman, Dec 18 2023

Keywords

Comments

A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.

Examples

			The terms together with the corresponding set-systems begin:
      7: {{1},{2},{1,2}}
      1: {{1}}
      4: {{1,2}}
     20: {{1,2},{1,3}}
    276: {{1,2},{1,3},{1,4}}
    320: {{1,2,3},{1,4}}
   1088: {{1,2,3},{1,2,4}}
  65856: {{1,2,3},{1,4},{1,5}}
  66112: {{1,2,3},{2,4},{1,5}}
  66624: {{1,2,3},{1,2,4},{1,5}}
		

Crossrefs

For strict sequences: A367910, firsts of A367905, sorted A367911.
For multisets w/o distinctness: A367913, firsts of A367912, sorted A367915.
For sequences w/o distinctness: A368111, firsts of A368109, sorted A368112.
Positions of first appearances in A368183.
The sorted version is A368185.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    nn=10000;
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    q=Table[Length[Union[Sort/@Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]]],{n,nn}];
    k=Max@@Select[Range[Max@@q], SubsetQ[q,Range[#]]&]
    Table[Position[q,n][[1,1]],{n,0,k}]

A368531 Numbers whose binary indices are all powers of 3, where a binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion.

Original entry on oeis.org

0, 1, 4, 5, 256, 257, 260, 261, 67108864, 67108865, 67108868, 67108869, 67109120, 67109121, 67109124, 67109125, 1208925819614629174706176, 1208925819614629174706177, 1208925819614629174706180, 1208925819614629174706181, 1208925819614629174706432
Offset: 1

Views

Author

Gus Wiseman, Dec 29 2023

Keywords

Comments

For powers of 2 instead of 3 we have A253317.

Examples

			The terms together with their binary expansions and binary indices begin:
         0:                           0 ~ {}
         1:                           1 ~ {1}
         4:                         100 ~ {3}
         5:                         101 ~ {1,3}
       256:                   100000000 ~ {9}
       257:                   100000001 ~ {1,9}
       260:                   100000100 ~ {3,9}
       261:                   100000101 ~ {1,3,9}
  67108864: 100000000000000000000000000 ~ {27}
  67108865: 100000000000000000000000001 ~ {1,27}
  67108868: 100000000000000000000000100 ~ {3,27}
  67108869: 100000000000000000000000101 ~ {1,3,27}
  67109120: 100000000000000000100000000 ~ {9,27}
  67109121: 100000000000000000100000001 ~ {1,9,27}
  67109124: 100000000000000000100000100 ~ {3,9,27}
  67109125: 100000000000000000100000101 ~ {1,3,9,27}
		

Crossrefs

A000244 lists powers of 3.
A048793 lists binary indices, length A000120, sum A029931.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    Select[Range[0,10000],IntegerQ[Log[3,Times@@Join@@Position[Reverse[IntegerDigits[#,2]],1]]]&]
    (* Second program *)
    {0}~Join~Array[FromDigits[Reverse@ ReplacePart[ConstantArray[0, Max[#]], Map[# -> 1 &, #]], 2] &[3^(Position[Reverse@ IntegerDigits[#, 2], 1][[;; , 1]] - 1)] &, 255] (* Michael De Vlieger, Dec 29 2023 *)

Formula

a(3^n) = 2^(3^n - 1).
Showing 1-8 of 8 results.