cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 35 results. Next

A227696 Expansion of f(x^3)^3 / f(x) in powers of x where f() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 2, 0, 2, -1, 2, 0, 1, -2, 2, 0, 2, 0, 2, 0, 3, -2, 0, 0, 2, -1, 2, 0, 2, -2, 2, 0, 0, 0, 4, 0, 2, -1, 2, 0, 2, -2, 0, 0, 1, -2, 2, 0, 4, 0, 2, 0, 0, -2, 2, 0, 2, 0, 2, 0, 3, -2, 2, 0, 2, 0, 0, 0, 2, -3, 2, 0, 0, -2, 2, 0, 4, 0, 2, 0, 2, 0, 0, 0, 2, -2
Offset: 0

Views

Author

Michael Somos, Sep 22 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x + 2*x^2 + 2*x^4 - x^5 + 2*x^6 + x^8 - 2*x^9 + 2*x^10 + ...
G.f. = q - q^4 + 2*q^7 + 2*q^13 - q^16 + 2*q^19 + q^25 - 2*q^28 + 2*q^31 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q^3]^3 / QPochhammer[ -q], {q, 0, n}]
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^9 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A))^3, n))}

Formula

Expansion of q^(-1/3) * eta(q) * eta(q^4) * eta(q^6)^9 / (eta(q^2) * eta(q^3) * eta(q^12))^3 in powers of q.
Euler transform of period 12 sequence [ -1, 2, 2, 1, -1, -4, -1, 1, 2, 2, -1, -2, ...].
Moebius transform is period 36 sequence [ 1, -1, -1, -1, -1, 1, 1, 1, 0, 1, -1, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 1, -1, 0, -1, -1, -1, 1, 1, 1, 1, -1, 0, ...].
a(n) = b(3*n+1) where b(n) is multiplicative with b(2^e) = - (1 + (-1)^e) / 2 if e>0, b(3^e) = 0^e, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^3) / 2 if p == 5 (mod 6).
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = (4/3)^(1/2) (t / i) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A226535.
G.f.: Product_{k>0} (1 - (-x)^k)^3 / (1 - (-x)^k).
a(n) = (-1)^n * A033687(n). a(4*n + 3) = 0.
a(2*n) = A097195(n). a(4*n) = A123884(n). a(4*n + 1) = - A033687(n). a(4*n + 2) = 2 * A121361(n).

A378007 Square table read by descending antidiagonals: T(n,k) = A378006(k*n+1,k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 0, 1, 0, 1, 1, 1, 2, 4, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 0, 2, 0, 0, 2, 1, 1, 1, 0, 4, 0, 1, 0, 3, 0, 1, 1, 1, 4, 6, 2, 6, 2, 4, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 2, 1, 1, 1, 4, 10, 4, 6, 4, 6, 2, 4, 2, 2, 1, 1
Offset: 0

Views

Author

Jianing Song, Nov 14 2024

Keywords

Comments

A condensed version of A378006: the k-th column is the sequence {b(k*n+1)}, with the sequence {b(n)} having Dirichlet g.f. Product_{chi} L(chi,s), where chi runs through all Dirichlet characters modulo k.

Examples

			Table starts
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 1, 1, 2, 0, 2, 2, 2, 0, 4, ...
  1, 1, 2, 1, 4, 2, 0, 4, 6, 0, ...
  1, 1, 0, 2, 1, 2, 0, 2, 0, 4, ...
  1, 1, 2, 2, 0, 1, 6, 0, 6, 4, ...
  1, 1, 1, 0, 0, 2, 0, 4, 0, 0, ...
  1, 1, 2, 3, 4, 2, 6, 2, 0, 4, ...
  1, 1, 0, 2, 0, 2, 0, 0, 1, 4, ...
  1, 1, 1, 0, 4, 3, 0, 0, 6, 1, ...
  1, 1, 2, 2, 0, 0, 3, 4, 0, 0, ...
  1, 1, 2, 2, 0, 2, 6, 3, 0, 4, ...
Write w = exp(2*Pi*i/3) = (-1 + sqrt(3)*i)/2.
Column k = 1: 1 + 1/2^s + 1/3^s + 1/4^s + 1/5^s + 1/6^s + 1/7^s + 1/8^s + 1/9^s + 1/10^s + 1/11^s + ...;
Column k = 2: 1 + 1/3^s + 1/5^s + 1/7^s + 1/9^s + 1/11^s + 1/13^s + 1/15^s + 1/17^s + 1/19^s + 1/21^s + ...;
Column k = 3: (1 + 1/2^s + 1/4^s + 1/5^s + ...)*(1 - 1/2^s + 1/4^s - 1/5^s + ...) = 1 + 1/4^s + 2/7^s + 2/13^s + 1/16^s + 2/19^s + 1/25^s + 2/28^s + 2/31^s + ...;
Column k = 4: (1 + 1/3^s + 1/5^s + 1/7^s + ...)*(1 - 1/3^s + 1/5^s - 1/7^s + ...) = 1 + 2/5^s + 1/9^s + 2/13^s + 2/17^s + 3/25^s + 2/29^s + 2/37^s + 2/41^s + ...;
Column k = 5: (1 + 1/2^s + 1/3^s + 1/4^s + ...)*(1 + i/2^s - i/3^s - 1/4^s + ...)*(1 - 1/2^s - 1/3^s + 1/4^s + ...)*(1 - i/2^s + i/3^s - 1/4^s + ...) = 1 + 4/11^s + 1/16^s + 4/31^s + 4/41^s + ...;
Column k = 6: (1 + 1/5^s + 1/7^s + 1/11^s + ...)*(1 - 1/5^s + 1/7^s - 1/11^s + ...) = 1 + 2/7^s + 2/13^s + 2/19^s + 1/25^s + 1/31^s + 2/37^s + 2/43^s + 3/49^s + 2/61^s + ...;
Column k = 7: (1 + 1/2^s + 1/3^s + 1/4^s + 1/5^s + 1/6^s + ...)*(1 + w/2^s + (w+1)/3^s - (w+1)/4^s - w/5^s - 1/6^s + ...)*(1 - (w+1)/2^s + w/3^s + w/4^s - (w+1)/5^s + 1/6^s + ...)*(1 + 1/2^s - 1/3^s + 1/4^s - 1/5^s - 1/6^s + ...)*(1 + w/2^s - (w+1)/3^s - (w+1)/4^s + w/5^s + 1/6^s + ...)*(1 - (w+1)/2^s - w/3^s + w/4^s + (w+1)/5^s - 1/6^s + ...) = 1 + 2/8^s + 6/29^s + 6/43^s + 3/64^s + 6/71^s + ...;
Column k = 8: (1 + 1/3^s + 1/5^s + 1/7^s + ...)*(1 + 1/3^s - 1/5^s - 1/7^s + ...)*(1 - 1/3^s + 1/5^s - 1/7^s + ...)*(1 - 1/3^s - 1/5^s + 1/7^s + ...) = 1 + 2/9^s + 4/17^s + 2/25^s + 4/41^s + 2/49^s + 4/73^s + 3/81^s + ...;
Column k = 9: (1 + 1/2^s + 1/4^s + 1/5^s + 1/7^s + 1/8^s + ...)*(1 + (w+1)/2^s + w/4^s - w/5^s - (w+1)/7^s - 1/8^s + ...)*(1 + w/2^s - (w+1)/4^s - (w+1)/5^s + w/7^s + 1/8^s + ...)*(1 - 1/2^s + 1/4^s - 1/5^s + 1/7^s - 1/8^s + ...)*(1 - (w+1)/2^s + w/4^s + w/5^s - (w+1)/7^s + 1/8^s + ...)*(1 - w/2^s - (w+1)/4^s + (w+1)/5^s + w/7^s - 1/8^s + ...) = 1 + 6/19^s + 6/37^s + 1/64^s + 6/73^s + ...;
Column k = 10: (1 + 1/3^s + 1/7^s + 1/9^s + ...)*(1 + i/3^s - i/7^s - 1/9^s + ...)*(1 - 1/3^s - 1/7^s + 1/9^s + ...)*(1 - i/3^s + i/7^s - 1/9^s + ...) = 1 + 4/11^s + 4/31^s + 4/41^s + 4/61^s + 4/71^s + 1/81^s + 4/101^s + ...
		

Crossrefs

Columns: A000012 (k=1 and k=2), A033687 (k=3), A008441 (k=4), A378008 (k=5), A097195 (k=6), A378009 (k=7), A378010 (k=8), A378011 (k=9), A378012 (k=10).
Cf. A378006.

Programs

  • PARI
    A378007(n,k) = {
    my(f = factor(k*n+1), res = 1); for(i=1, #f~, my(d = znorder(Mod(f[i,1],k)));
    if(f[i,2] % d != 0, return(0), my(m = f[i,2]/d, r = eulerphi(k)/d); res *= binomial(m+r-1,r-1)));
    res;}

Formula

See A378006.
For odd k, T(2*k,n) = T(k,2*n).

A045833 Expansion of eta(q^9)^3 / eta(q^3) in powers of q.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0
Offset: 0

Views

Author

Keywords

Examples

			G.f. = q + q^4 + 2*q^7 + 2*q^13 + q^16 + 2*q^19 + q^25 + 2*q^28 + 2*q^31 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q^9]^3 / QPochhammer[ q^3], {q, 0, n}]; (* Michael Somos, Feb 22 2015 *)
    f[p_, e_] := If[Mod[p, 3] == 1, e + 1, (1 + (-1)^e)/2]; f[3, e_] := 0; a[0] = 0; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100, 0] (* Amiram Eldar, Oct 13 2022 *)
  • PARI
    {a(n) = local(A, p, e); if( n<0, 0, A=factor(n); prod(k=1, matsize(A)[1], if( p=A[k,1], e=A[k,2]; if( p!=3, if( p%3==1, e+1, !(e%2))))))}; \\ Michael Somos, May 25 2005
    
  • PARI
    {a(n) = local(A); if( (n<1) || (n%3!=1), 0, n = (n-1)/3; A = x * O(x^n); polcoeff( eta(x^3 + A)^3 / eta(x + A), n))}; \\ Michael Somos, May 25 2005

Formula

From Michael Somos, May 25 2005: (Start)
Euler transform of period 9 sequence [ 0, 0, 1, 0, 0, 1, 0, 0, -2, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2*w - 2*u*w^2 - v^3.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1*u3^2 + u1*u6^2 - u1*u3*u6 - u2^2*u3.
a(3*n) = a(3*n + 2) = 0. a(3*n + 1) = A033687(n). a(6*n + 1) = A097195(n). 3*a(n) = A033685(n).
Multiplicative with a(3^e) = 0^e, a(p^e) = e+1 if p == 1 (mod 3), a(p^e) = (1+(-1)^e)/2 if p == 2 (mod 3).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u2*u3^2 + 2*u2*u3*u6 + 4*u2*u6^2 - u1^2*u6. (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/(9*sqrt(3)) = 0.403066... . - Amiram Eldar, Oct 13 2022
Dirichlet g.f.: L(chi_1,s)*L(chi_{-1},s), where chi_1 = A011655 and chi_{-1} = A102283 are respectively the principal and the non-principal Dirichlet character modulo 3. For the formula of the sequence whose Dirichlet g.f. is Product_{chi} L(chi,s), where chi runs through all Dirichlet characters modulo k, see A378006. This sequence is the case k = 3. - Jianing Song, Nov 13 2024

A097190 Triangle read by rows in which row n gives coefficients of polynomial R_n(y) that satisfies R_n(1/3) = 9^n, where R_n(y) forms the initial (n+1) terms of g.f. A097191(y)^(n+1).

Original entry on oeis.org

1, 1, 24, 1, 36, 612, 1, 48, 1104, 15912, 1, 60, 1740, 32130, 417690, 1, 72, 2520, 56700, 912492, 11027016, 1, 84, 3444, 91350, 1750014, 25562628, 292215924, 1, 96, 4512, 137808, 3059856, 52303968, 710025264, 7764594552, 1, 108, 5724, 197802, 4992354
Offset: 0

Views

Author

Paul D. Hanna, Aug 03 2004

Keywords

Examples

			Row polynomials evaluated at y=1/3 equals powers of 9:
9^1 = 1 + 24/3;
9^2 = 1 + 36/3 + 612/3^2;
9^3 = 1 + 48/3 + 1104/3^2 + 15912/3^3;
9^4 = 1 + 60/3 + 1740/3^2 + 32130/3^3 + 417690/3^4;
where A097191(y)^(n+1) has the same initial terms as the n-th row:
A097191(y) = 1 + 12y + 60y^2 + 90y^3 - 558y^4 - 2916y^5 + 2160y^6 +...
A097191(y)^2 = 1 + 24y +...
A097191(y)^3 = 1 + 36y + 612y^2 +...
A097191(y)^4 = 1 + 48y + 1104y^2 + 15912y^3 +...
A097191(y)^5 = 1 + 60y + 1740y^2 + 32130y^3 + 417690y^4 +...
Rows begin with n=0:
  1;
  1, 24;
  1, 36,  612;
  1, 48, 1104,  15912;
  1, 60, 1740,  32130,  417690;
  1, 72, 2520,  56700,  912492, 11027016;
  1, 84, 3444,  91350, 1750014, 25562628, 292215924;
  1, 96, 4512, 137808, 3059856, 52303968, 710025264, 7764594552; ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[3*y/((1-27*x*y) + (3*y-1)*(1-27*x*y)^(8/9)), {x, 0,n}, {y,0,k}], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 17 2019 *)
  • PARI
    {T(n,k)=if(n==0,1,if(k==0,1,if(k==n, 3^n*(9^n-sum(j=0,n-1, T(n,j)/3^j)), polcoeff((Ser(vector(n,i,T(n-1,i-1)),x) +x*O(x^k))^((n+1)/n),k,x))))}

Formula

G.f.: A(x, y) = 3*y/((1-27*x*y) + (3*y-1)*(1-27*x*y)^(8/9)).
G.f.: A(x, y) = A097192(x*y)/(1 - x*A097193(x*y)).

A374900 Expansion of Sum_{k in Z} x^k / (1 - x^(7*k+1)).

Original entry on oeis.org

1, 2, 2, 2, 2, 1, 2, 2, 2, 3, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 1, 4, 2, 2, 2, 0, 2, 2, 3, 4, 2, 0, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 0, 2, 2, 0, 2, 2, 2, 3, 2, 0, 2, 2, 4, 0, 2, 2, 2, 2, 2, 3, 2, 0, 2, 4, 2, 2, 0, 0, 2, 2, 2, 4, 2, 0, 2, 2, 2, 2, 2, 0, 2, 4, 4, 2, 2, 0, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Seiichi Manyama, Jul 31 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=110, x='x+O('x^N)); Vec(sum(k=-N, N, x^k/(1-x^(7*k+1))))
    
  • PARI
    my(N=110, x='x+O('x^N)); Vec(prod(k=1, N, (1-x^(7*k))^2*(1-x^(7*k-2))*(1-x^(7*k-5))/((1-x^(7*k-1))*(1-x^(7*k-6)))^2))

Formula

G.f.: Product_{k>0} (1-x^(7*k))^2 * (1-x^(7*k-2)) * (1-x^(7*k-5)) / ((1-x^(7*k-1)) * (1-x^(7*k-6)))^2.

A115978 Expansion of phi(-q) * phi(-q^3) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 0, -2, 6, 0, 0, -4, 0, -2, 0, 0, 6, -4, 0, 0, 6, 0, 0, -4, 0, -4, 0, 0, 0, -2, 0, -2, 12, 0, 0, -4, 0, 0, 0, 0, 6, -4, 0, -4, 0, 0, 0, -4, 0, 0, 0, 0, 6, -6, 0, 0, 12, 0, 0, 0, 0, -4, 0, 0, 0, -4, 0, -4, 6, 0, 0, -4, 0, 0, 0, 0, 0, -4, 0, -2, 12, 0, 0, -4, 0, -2, 0, 0, 12, 0, 0, 0, 0, 0, 0, -8, 0, -4, 0, 0, 0, -4, 0, 0, 6, 0
Offset: 0

Views

Author

Michael Somos, Feb 09 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 2*q - 2*q^3 + 6*q^4 - 4*q^7 - 2*q^9 + 6*q^12 - 4*q^13 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^3], {q, 0, n}] (* Michael Somos, Nov 09 2013 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^3 + A))^2 / (eta(x^2 + A) * eta(x^6 + A)), n))}
    
  • PARI
    {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); -2 * prod( k=1, matsize(A)[1], if(p = A[k,1], e = A[k,2]; if( p==2, -3 * ((e+1)%2), if( p==3, 1, if( p%6==1, e+1, (e+1)%2))))))} /* Michael Somos, Nov 09 2013 */

Formula

Expansion of theta_4(q) * theta_4(q^3) in powers of q.
Expansion of (4 * a(q^4) - a(q)) / 3 = (4 * b(q^4) - b(q)) * b(q) / (3 * b(q^2)) in powers of q where a(), b() are cubic AGM theta functions. - Michael Somos, Nov 09 2013
Expansion of (eta(q) * eta(q^3))^2 / (eta(q^2) * eta(q^6)) in powers of q.
Euler transform of period 6 sequence [ -2, -1, -4, -1, -2, -2, ...].
Moebius transform is period 12 sequence [ -2, 2, 0, 6, 2, 0, -2, -6, 0, -2, 2, 0, ...]. - Michael Somos, Nov 09 2013
a(n) = -2*b(n) where b(n) is multiplicative and b(2^e) = -3 * (1 + (-1)^e) / 2 if e>0, b(3^e) = 1, b(p^e) = 1+e if p == 1 (mod 6), b(p^e) = (1 +(-1)^e) / 2 if p == 5 (mod 6).
Given g.f. A(x), then B(x) = A(x)^2 satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = v*(u + v)^2 - 4*u * (w^2 - v*w + v^2).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 192^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A033762. - Michael Somos, Nov 09 2013
G.f.: 1 - 2*(Sum_{k>0} x^k / (1 + x^k + x^(2*k)) - 4 * x^(4*k) / (1 + x^(4*k) + x^(8*k))).
G.f.: (Sum_{k in Z} (-x)^(k^2)) * (Sum_{k in Z} (-x)^(3*k^2)).
a(n) = -2 * A115979(n) unless n=0. a(n) = (-1)^n * A033716(n).
a(3*n + 2) = a(4*n + 2) = 0. a(3*n) = a(n). a(2*n + 1) = -2 * A033762(n). a(3*n + 1) = -2 * A122861(n). a(4*n) = A004016(n). a(4*n + 1) = -2 * A112604(n). a(6*n + 1) = -2 * A097195(n). - Michael Somos, Nov 09 2013

A123530 Expansion of q^(-1/2)*eta(q)^2*eta(q^6)^3/(eta(q^2)*eta(q^3)^2) in powers of q.

Original entry on oeis.org

1, -2, 0, 2, -2, 0, 2, 0, 0, 2, -4, 0, 1, -2, 0, 2, 0, 0, 2, -4, 0, 2, 0, 0, 3, 0, 0, 0, -4, 0, 2, -4, 0, 2, 0, 0, 2, -2, 0, 2, -2, 0, 0, 0, 0, 4, -4, 0, 2, 0, 0, 2, 0, 0, 2, -4, 0, 0, -4, 0, 1, 0, 0, 2, -4, 0, 4, 0, 0, 2, 0, 0, 0, -6, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 3, -4, 0, 2, 0, 0, 2, -4, 0, 0, -4, 0, 2, 0, 0, 2, -4, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Oct 02 2006

Keywords

Programs

  • Mathematica
    QP = QPochhammer; s = QP[q]^2*(QP[q^6]^3/(QP[q^2]*QP[q^3]^2)) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
  • PARI
    {a(n)=if(n<0, 0, n=2*n+1; sumdiv(n, d, kronecker(-12,d)*[0,1,0,-2,0,1][n/d%6+1]))}
    
  • PARI
    {a(n)=local(A, p, e); if(n<0, 0, n=2*n+1; A=factor(n); prod( k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, 0, if(p==3, -2, if(p%6==1, e+1, !(e%2)))))))}
    
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x+A)^2*eta(x^6+A)^3/eta(x^2+A)/eta(x^3+A)^2, n))}

Formula

Euler transform of period 6 sequence [ -2, -1, 0, -1, -2, -2, ...].
a(n) = b(2n+1) where b(n) is multiplicative and b(2^e) = 0^e, b(3^e) = -2 if e>0, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6).
G.f.: Sum_{k>0} F(x^(6k-5))-F(x^(6k-1)) where F(x)=(x-x^3)/(1+x^2+x^4).
a(3*n+2) = 0.
a(3*n) = A097195(n).
a(3*n+1) = -2*A033762(n).
a(n) = A097109(2*n+1) = A112848(2*n+1).

A153728 Expansion of q^(-1/3) * (eta(q)^8 + 8 * eta(q^4)^8) in powers of q^2.

Original entry on oeis.org

1, 20, -70, 56, -125, 308, 110, -520, 57, 0, 182, -880, 1190, 884, 0, -1400, -1330, 1820, -646, 0, -1331, 380, 1120, 2576, 0, 1748, -3850, -3400, 2703, -2500, 3458, 0, -1150, -5236, 0, 6032, 6160, -3220, 4466, 0, -7378, -3920, 0, 2200, 0, 812, -4030, 5600, -4913
Offset: 0

Views

Author

Michael Somos, Dec 31 2008

Keywords

Comments

This is a member of an infinite family of integer weight modular forms. g_1 = A097195, g_2 = A000727, g_3 = A152243, g_4 = A153728. - Michael Somos, Jun 10 2015

Examples

			G.f. = 1 + 20*x - 70*x^2 + 56*x^3 - 125*x^4 + 308*x^5 + 110*x^6 - 520*x^7 + ...
G.f. = q + 20*q^7 - 70*q^13 + 56*q^19 - 125*q^25 + 308*q^31 + 110*q^37 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( CuspForms( Gamma0(36), 4), 289); A[1] + 20*A[7] - 70*A[12]; /* Michael Somos, Jun 10 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^8 + 8 x QPochhammer[ x^4]^8, {x, 0, 2 n}]; (* Michael Somos, Jun 10 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, n *= 2; A = x * O(x^n); polcoeff( eta(x + A)^8 + 8 * x * eta(x^4 + A)^8, n))};
    
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 6*n + 1; A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k,]; if( p<5, 0, p%6==5, if( e%2, 0, (-p)^(3*e/2)), for(x=1, sqrtint(p\3), if( issquare(p-3*x^2, &y), break)); if( y%3!=1, y=-y); y*=2; y = y^3 - 3*p*y; a0=1; a1=y; for(i=2, e, x = y*a1 - p^3*a0; a0=a1; a1=x); a1)))}; /* Michael Somos, Jun 10 2015 */
    

Formula

a(n) = b(6*n + 1) where b(n) is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 * (-1)^(e/2) * p^(3*e/2) if p == 5 (mod 6), b(p^e) = b(p) * b(p^(e-1)) - b(p^(e-2)) * p^3 if p == 1 (mod 6) where b(p) = (x^2 - 3*p)*x, 4*p = x^2 + 3*y^2, |x| < |y| and x == 2 (mod 3).
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 648 (t/i)^4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A153729.
a(n) = A000731(2*n) = A153729(2*n) = A161969(2*n). - Michael Somos, Jun 10 2015

A112298 Expansion of (a(q) - 3*a(q^2) + 2*a(q^4)) / 6 in powers of q where a() is a cubic AGM theta function.

Original entry on oeis.org

1, -3, 1, 3, 0, -3, 2, -3, 1, 0, 0, 3, 2, -6, 0, 3, 0, -3, 2, 0, 2, 0, 0, -3, 1, -6, 1, 6, 0, 0, 2, -3, 0, 0, 0, 3, 2, -6, 2, 0, 0, -6, 2, 0, 0, 0, 0, 3, 3, -3, 0, 6, 0, -3, 0, -6, 2, 0, 0, 0, 2, -6, 2, 3, 0, 0, 2, 0, 0, 0, 0, -3, 2, -6, 1, 6, 0, -6, 2, 0, 1, 0, 0, 6, 0, -6, 0, 0, 0, 0, 4, 0, 2, 0, 0, -3, 2, -9, 0, 3, 0, 0, 2, -6, 0
Offset: 1

Views

Author

Michael Somos, Sep 02 2005

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - 3*q^2 + q^3 + 3*q^4 - 3*q^6 + 2*q^7 - 3*q^8 + q^9 + 3*q^12 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(12), 1), 106); A[2] - 3*A[3] + A[4] + 3*A[5]; /* Michael Somos, Jan 17 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q, q^2]^3 QPochhammer[ -q^6, q^6]^3 EllipticTheta[ 4, 0, q^2] EllipticTheta[ 2, 0, q^(3/2)] / (2 q^(3/8)), {q, 0, n}]; (* Michael Somos, Jan 17 2015 *)
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, JacobiSymbol[ -3, n/#] {1, -2, 1, 0}[[Mod[#, 4, 1]]] &]]; (* Michael Somos, Jan 17 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, kronecker(-3, n/d)*[0, 1, -2, 1][d%4 + 1]))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^12 + A))^3/ (eta(x^2 + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^6 + A)), n))};
    

Formula

From Michael Somos, Jan 17 2015: (Start)
Expansion of b(q) * (b(q^4) - b(q)) / (3*b(q^2)) in powers of q where b() is a cubic AGM theta function.
Expansion of q * chi(-q)^3 * phi(-q^2) * psi(q^3) / chi(-q^6)^3 in powers of q where phi(), psi(), chi() are Ramanujan theta functions.
Expansion of q * phi(-q)^2 * psi(q^6)^2 / (psi(-q) * psi(-q^3)) in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of q * f(q) * f(-q, -q^5)^4 / f(q^3)^3 in powers of q where f() is a Ramanujan theta function. (End)
Expansion of (eta(q) * eta(q^12))^3 / (eta(q^2) * eta(q^3) * eta(q^4) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ -3, -2, -2, -1, -3, 0, -3, -1, -2, -2, -3, -2, ...].
Moebius transform is period 12 sequence [ 1, -4, 0, 6, -1, 0, 1, -6, 0, 4, -1, 0, ...].
Multiplicative with a(2^e) = 3(-1)^e if e>0, a(3^e)=1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e)/2 if p == 2 (mod 6).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 12^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
G.f.: Sum_{k>0} Kronecker(-3, k) * x^k * (1 - x^k)^2 / (1 - x^(4*k)).
a(n) = -(-1)^n * A244375(n). a(6*n + 5) = 0, a(3*n) = a(n).
a(2*n) = -3 * A093829(n). a(2*n + 1) = A033762(n). a(3*n + 1) = A129576(n). a(4*n + 1) = A112604(n). a(4*n + 3) = A112605(n). a(6*n + 1) = A097195(n). a(6*n + 2) = -3 * A033687(n).
Sum_{k=1..n} abs(a(k)) ~ (Pi/sqrt(3)) * n. - Amiram Eldar, Jan 23 2024

A112848 Expansion of eta(q)*eta(q^2)*eta(q^18)^2/(eta(q^6)*eta(q^9)) in powers of q.

Original entry on oeis.org

1, -1, -2, 1, 0, 2, 2, -1, -2, 0, 0, -2, 2, -2, 0, 1, 0, 2, 2, 0, -4, 0, 0, 2, 1, -2, -2, 2, 0, 0, 2, -1, 0, 0, 0, -2, 2, -2, -4, 0, 0, 4, 2, 0, 0, 0, 0, -2, 3, -1, 0, 2, 0, 2, 0, -2, -4, 0, 0, 0, 2, -2, -4, 1, 0, 0, 2, 0, 0, 0, 0, 2, 2, -2, -2, 2, 0, 4, 2, 0, -2, 0, 0, -4, 0, -2, 0, 0, 0, 0, 4, 0, -4, 0, 0, 2, 2, -3, 0, 1, 0, 0, 2, -2, 0
Offset: 1

Views

Author

Michael Somos, Sep 22 2005

Keywords

Crossrefs

Cf. A033687, A033762, A092829, A093829, A097195, A248897, A255648 (absolute values).

Programs

  • Mathematica
    QP = QPochhammer; s = QP[q]*QP[q^2]*(QP[q^18]^2/(QP[q^6]*QP[q^9])) + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *)
    f[p_, e_] := If[Mod[p, 6] == 1, e+1, (1+(-1)^e)/2]; f[2, e_] := (-1)^e; f[3, e_]:= -2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 28 2024 *)
  • PARI
    {a(n)=if(n<1, 0, if(n%3==0, n/=3; -2,1)* sumdiv(n,d,kronecker(-12,d) -if(d%2==0, 2*kronecker(-3,d/2))))}
    
  • PARI
    {a(n)=local(A); if (n<1, 0, n--; A=x*O(x^n); polcoeff( eta(x+A)*eta(x^2+A)*eta(x^18+A)^2/ eta(x^6+A)/eta(x^9+A), n))}

Formula

Euler transform of period 18 sequence [ -1, -2, -1, -2, -1, -1, -1, -2, 0, -2, -1, -1, -1, -2, -1, -2, -1, -2, ...].
Moebius transform is period 18 sequence [1, -2, -3, 2, -1, 6, 1, -2, 0, 2, -1, -6, 1, -2, 3, 2, -1, 0, ...].
Multiplicative with a(2^e) = (-1)^e, a(3^e) = -2 if e>0, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6).
G.f.: Sum_{k>0} Kronecker(-3, k) x^k(1-x^(2k))^2/(1-x^(6k)) = x Product_{k>0} (1-x^k)(1-x^(2k))(1+x^(9k))(1+x^(6k)+x^(12k)).
a(3n) = -2*A092829(n). a(3n+1) = A093829(3n+1) = A033687(n). a(3n+2) = A093829(3n+2). a(6n)/2 = A093829(n). a(6n+1) = A097195(n). a(6n+3) = -2*A033762(n). a(6n+5) = 0.
Sum_{k=1..n} abs(a(k)) ~ c * n, where c = 2*Pi/(3*sqrt(3)) = 1.209199... (A248897). - Amiram Eldar, Jan 23 2024
Previous Showing 11-20 of 35 results. Next