cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A349441 Dirichlet convolution of A057521 (powerful part of n) with A055615 (Dirichlet inverse of n).

Original entry on oeis.org

1, -1, -2, 2, -4, 2, -6, 0, 6, 4, -10, -4, -12, 6, 8, 0, -16, -6, -18, -8, 12, 10, -22, 0, 20, 12, 0, -12, -28, -8, -30, 0, 20, 16, 24, 12, -36, 18, 24, 0, -40, -12, -42, -20, -24, 22, -46, 0, 42, -20, 32, -24, -52, 0, 40, 0, 36, 28, -58, 16, -60, 30, -36, 0, 48, -20, -66, -32, 44, -24, -70, 0, -72, 36, -40, -36
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2021

Keywords

Comments

Multiplicative because A055615 and A057521 are.
Convolving this with Euler phi (A000010) produces A349379.

Crossrefs

Cf. A055615, A057521, A349442 (Dirichlet inverse), A349443 (sum with it).
Cf. also A097945, A349379.

Programs

  • Mathematica
    f[p_, e_] := Which[e > 2, 0, e == 2, p^2 - p, e == 1, 1 - p]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 19 2021 *)
  • PARI
    A055615(n) = (n*moebius(n));
    A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); }; \\ From A057521
    A349441(n) = sumdiv(n,d,A057521(n/d)*A055615(d));

Formula

a(n) = Sum_{d|n} A057521(n/d) * A055615(d).
Multiplicative with a(p^e) = 1 - p is e = 1, p^2 - p if e = 2, and 0 otherwise. - Amiram Eldar, Nov 19 2021

A097946 a(n) = A008683(n)*A014197(n) where A008683 is the Moebius (or Mobius) function mu(n) and A014197 is the number of numbers m with Euler phi(m) = n.

Original entry on oeis.org

2, -3, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gerald McGarvey, Sep 04 2004

Keywords

Comments

For n < 93 and a(n) not 0, n = p - 1 where p is prime and therefore in A077064 (Squarefree numbers of form prime - 1.)

Crossrefs

Programs

A191750 Dirichlet convolution of A000012 with A007947.

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 7, 7, 18, 12, 20, 14, 24, 24, 9, 18, 21, 20, 30, 32, 36, 24, 28, 11, 42, 10, 40, 30, 72, 32, 11, 48, 54, 48, 35, 38, 60, 56, 42, 42, 96, 44, 60, 42, 72, 48, 36, 15, 33, 72, 70, 54, 30, 72, 56, 80, 90, 60, 120, 62, 96, 56, 13, 84, 144, 68, 90, 96, 144, 72
Offset: 1

Views

Author

Enrique Pérez Herrero, Jun 22 2011

Keywords

Comments

The squarefree kernel of n is sometimes called rad(n).
Sequence is multiplicative with a(p^e) = 1 + p*e.
Dirichlet convolution of A000005 with the function of absolute values of A097945. - R. J. Mathar, Jul 12 2011
Dirichlet convolution of phi(n)*mu(n)^2 with tau(n). - Richard L. Ollerton, May 07 2021

Examples

			The divisors of 12 are 1,2,3,4,6 and 12, the squarefree kernels of these numbers are 1,2,3,2,6 and 6, so a(12) = 1+2+3+2+6+6 = 20.
		

Crossrefs

Cf. A007947, A000012 (all 1's sequence), A005117, A073355.

Programs

  • Magma
    A007947:=func< n | &*PrimeDivisors(n) >; A191750:=func< n | &+[ A007947(d): d in Divisors(n) ] >; [ A191750(n): n in [1..80] ]; // Klaus Brockhaus, Jun 27 2011
  • Maple
    with(numtheory): A191750 := n -> add(ilcm(op(factorset(k))),k=divisors(n)):
    seq(A191750(i), i=1..80); # Peter Luschny, Jun 23 2011
  • Mathematica
    rad[n_]:=Times@@(FactorInteger[n][[All,1]]); A191750[n_]:=Plus@@rad/@Divisors[n]; Array[A191750,50]
    a[1] = 1; a[n_] := Times @@ ((1 + First[#] * Last[#])& /@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 21 2020 *)
  • PARI
    rad(n)=local(p); p=factor(n)[, 1]; prod(i=1, length(p), p[i]);
    A191750(n)=sumdiv(n, d, rad(d))
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p*X - X)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, Jun 19 2020
    

Formula

a(n) = Sum_{d|n} rad(d) = Sum_{d|n} A007947(d).
a(n) <= sigma_1(n) = A000203(n); equality holds if n is a squarefree number (A005117).
Dirichlet g.f.: zeta^2(s)*Product_{primes p} (1+p^(1-s)-p^(-s)). - R. J. Mathar, Jul 12 2011
G.f.: Sum_{k>=1} rad(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Nov 06 2018
a(n) = Sum_{d|n} mu(d)^2*phi(d)*tau(n/d). - Ridouane Oudra, Nov 19 2019
From Vaclav Kotesovec, Jun 19 2020: (Start)
Dirichlet g.f.: zeta(s)^2 * zeta(s-1) / zeta(2*s-2) * Product_{primes p} (1 - 1/(p^s + p)).
Dirichlet g.f.: zeta(s)^2 * zeta(s-1) * Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s)).
Sum_{k=1..n} a(k) ~ c * Pi^2 * n^2 / 12, where c = A065463 = Product_{p prime} (1 - 1/(p*(p+1))) = 0.70444220099916559... (End)
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} mu(n/gcd(n,k))^2*tau(gcd(n,k)).
a(n) = Sum_{k=1..n} mu(gcd(n,k))^2*tau(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)

A326306 Dirichlet g.f.: zeta(s) * zeta(s-1) * Product_{p prime} (1 - p^(1 - s) + p^(-s)).

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 8, 5, 4, 2, 8, 2, 4, 4, 16, 2, 10, 2, 8, 4, 4, 2, 16, 7, 4, 14, 8, 2, 8, 2, 32, 4, 4, 4, 20, 2, 4, 4, 16, 2, 8, 2, 8, 10, 4, 2, 32, 9, 14, 4, 8, 2, 28, 4, 16, 4, 4, 2, 16, 2, 4, 10, 64, 4, 8, 2, 8, 4, 8, 2, 40, 2, 4, 14, 8, 4, 8, 2, 32, 41, 4, 2, 16, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 17 2019

Keywords

Comments

Inverse Moebius transform of A003557.
Dirichlet convolution of A000203 with A097945.

Crossrefs

Cf. A000010, A000079 (fixed points), A000203, A003557, A007947, A008683, A098108 (parity of a(n)), A191750, A300717, A335032.

Programs

  • Mathematica
    Table[Sum[d/Last[Select[Divisors[d], SquareFreeQ]], {d, Divisors[n]}], {n, 1, 85}]
    Table[Sum[MoebiusMu[n/d] EulerPhi[n/d] DivisorSigma[1, d], {d, Divisors[n]}], {n, 1, 85}]
    f[p_, e_] := 1 + (p^e-1)/(p-1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 14 2020 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - p*X + X)/(1 - X)/(1 - p*X))[n], ", ")) \\ Vaclav Kotesovec, Jun 14 2020

Formula

G.f.: Sum_{k>=1} (k / rad(k)) * x^k / (1 - x^k), where rad = A007947.
a(n) = Sum_{d|n} A003557(d).
a(n) = Sum_{d|n} mu(n/d) * phi(n/d) * sigma(d), where mu = A008683, phi = A000010 and sigma = A000203.
a(p) = 2, where p is prime.
From Vaclav Kotesovec, Jun 20 2020: (Start)
Dirichlet g.f.: zeta(s) * Product_{primes p} (1 + 1/(p^s - p)).
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) + p^(-s)). (End)
Multiplicative with a(p^e) = 1 + (p^e-1)/(p-1). - Amiram Eldar, Oct 14 2020
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} mu(n/gcd(n,k))*sigma(gcd(n,k)).
a(n) = Sum_{k=1..n} mu(gcd(n,k))*sigma(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)

A335032 Dirichlet g.f.: zeta(s) * zeta(s-1) * Product_{p prime} (1 + p^(1 - s) - p^(-s)).

Original entry on oeis.org

1, 4, 6, 10, 10, 24, 14, 22, 21, 40, 22, 60, 26, 56, 60, 46, 34, 84, 38, 100, 84, 88, 46, 132, 55, 104, 66, 140, 58, 240, 62, 94, 132, 136, 140, 210, 74, 152, 156, 220, 82, 336, 86, 220, 210, 184, 94, 276, 105, 220, 204, 260, 106, 264, 220, 308, 228, 232, 118
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 20 2020

Keywords

Comments

Dirichlet convolution of A000203 with abs(A097945).

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[1, n/d] * Abs[MoebiusMu[d]] * EulerPhi[d], {d, Divisors[n]}], {n, 1, 100}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p*X - X)/(1 - X)/(1 - p*X))[n], ", "))
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p*X/(1 - X))/(1 - p*X))[n], ", "))

Formula

Dirichlet g.f.: zeta(s) * zeta(s-1)^2 / zeta(2*s-2) * Product_{primes p} (1 - 1/(p^s + p)).
Dirichlet g.f.: zeta(s) * zeta(s-1)^2 * Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s)).
Let f(s) = Product_{primes p} (1 - 1/(p^s + p)), then Sum_{k=1..n} a(k) ~ n^2 * ((log(n)/2 + gamma - 3*zeta'(2)/Pi^2 - 1/4)*f(2) + f'(2)/2), where f(2) = A065463 = Product_{primes p} (1 - 1/(p*(p+1))) = 0.7044422009991655927366033503266372..., f'(2) = f(2) * Sum_{primes p} p*log(p) / ((p+1)*(p^2+p-1)) = 0.23219454323726621271960146689644280341444084188447499043209938838191022838..., for zeta'(2) see A073002 and gamma is the Euler-Mascheroni constant A001620.
a(n) = Sum_{d|n} A176345(d). - Ridouane Oudra, Jan 14 2022
Multiplicative with a(p^e) = sigma(p^e) + p^e - 1. - Amiram Eldar, Dec 25 2022

A341635 a(n) = Sum_{d|n} phi(d) * mu(d) * mu(n/d).

Original entry on oeis.org

1, -2, -3, 1, -5, 6, -7, 0, 2, 10, -11, -3, -13, 14, 15, 0, -17, -4, -19, -5, 21, 22, -23, 0, 4, 26, 0, -7, -29, -30, -31, 0, 33, 34, 35, 2, -37, 38, 39, 0, -41, -42, -43, -11, -10, 46, -47, 0, 6, -8, 51, -13, -53, 0, 55, 0, 57, 58, -59, 15, -61, 62, -14, 0, 65
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 16 2021

Keywords

Comments

Dirichlet inverse of A003967.
Moebius transform of A097945.
From Vaclav Kotesovec, Feb 19 2021: (Start)
Abs(a(n)) <= n.
a(n) = n iff n is in A030229. (End)

Crossrefs

Cf. A000010, A003967, A007427, A007431, A008683, A030229 (fixed points), A046099 (positions of 0's), A068341, A097945, A276833.

Programs

  • Mathematica
    Table[Sum[EulerPhi[d] MoebiusMu[d] MoebiusMu[n/d], {d, Divisors[n]}], {n, 65}]
    Table[Sum[MoebiusMu[GCD[n, k]] MoebiusMu[n/GCD[n, k]], {k, n}], {n, 65}]
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*moebius(d)*moebius(n/d)); \\ Michel Marcus, Feb 17 2021

Formula

a(n) = Sum_{k=1..n} mu(gcd(n,k)) * mu(n/gcd(n,k)).
a(1) = 1; a(n) = -Sum_{d|n, d < n} A003967(n/d) * a(d).
a(n) = Sum_{d|n} mu(n/d) * A097945(d).
Multiplicative with a(p^e) = -p if e=1, p-1 if e=2, and 0 otherwise. - Amiram Eldar, Feb 19 2021

A349911 Dirichlet inverse of A336466, which is fully multiplicative with a(p) = oddpart(p-1).

Original entry on oeis.org

1, -1, -1, 0, -1, 1, -3, 0, 0, 1, -5, 0, -3, 3, 1, 0, -1, 0, -9, 0, 3, 5, -11, 0, 0, 3, 0, 0, -7, -1, -15, 0, 5, 1, 3, 0, -9, 9, 3, 0, -5, -3, -21, 0, 0, 11, -23, 0, 0, 0, 1, 0, -13, 0, 5, 0, 9, 7, -29, 0, -15, 15, 0, 0, 3, -5, -33, 0, 11, -3, -35, 0, -9, 9, 0, 0, 15, -3, -39, 0, 0, 5, -41, 0, 1, 21, 7, 0, -11, 0
Offset: 1

Views

Author

Antti Karttunen, Dec 08 2021

Keywords

Comments

Multiplicative because A336466 is.

Crossrefs

Cf. also A097945.

Programs

  • Mathematica
    f[p_, e_] := ((p-1)/2^IntegerExponent[p-1, 2])^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; a[n_] := a[n] = -DivisorSum[n, a[#] * s[n/#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Dec 08 2021 *)
  • PARI
    A000265(n) = (n>>valuation(n,2));
    A336466(n) = { my(f=factor(n)); prod(k=1,#f~,A000265(f[k,1]-1)^f[k,2]); };
    memoA349911 = Map();
    A349911(n) = if(1==n,1,my(v); if(mapisdefined(memoA349911,n,&v), v, v = -sumdiv(n,d,if(dA336466(n/d)*A349911(d),0)); mapput(memoA349911,n,v); (v)));

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A336466(n/d) * a(d).
a(n) = A349912(n) - A336466(n).

A054585 Sum_{d=1..n} phi(d)*mu(d).

Original entry on oeis.org

0, 1, 0, -2, -2, -6, -4, -10, -10, -10, -6, -16, -16, -28, -22, -14, -14, -30, -30, -48, -48, -36, -26, -48, -48, -48, -36, -36, -36, -64, -72, -102, -102, -82, -66, -42, -42, -78, -60, -36, -36, -76, -88, -130, -130, -130, -108, -154, -154, -154, -154, -122, -122, -174, -174, -134, -134, -98, -70, -128
Offset: 0

Views

Author

N. J. A. Sloane, Apr 12 2000

Keywords

Crossrefs

Partial sums of A097945.

Programs

  • PARI
    a(n)=my(s); forsquarefree(k=1, n, s += moebius(k)*eulerphi(k)); s \\ Charles R Greathouse IV, Jan 07 2018
    
  • PARI
    first(n)=my(v=vector(n),s); forsquarefree(k=1, n, v[k[1]] = s+=moebius(k)*eulerphi(k)); for(k=4,n, if(v[k]==0, v[k]=v[k-1])); concat(0, v) \\ Charles R Greathouse IV, Jan 07 2018

A143153 Triangle read by rows, A054525 * (A020639 * 0^(n-k)), 1<=k<=n.

Original entry on oeis.org

1, -1, 2, -1, 0, 3, 0, -2, 0, 2, -1, 0, 0, 0, 5, 1, -2, -3, 0, 0, 2, -1, 0, 0, 0, 0, 0, 7, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0, -3, 0, 0, 0, 0, 0, 3, 1, -2, 0, 0, -5, 0, 0, 0, 0, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 2, 0, -2, 0, -2, 0, 0, 0, 0, 0, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 1, -2, 0, 0, 0, 0, -7, 0, 0, 0, 0, 0, 0, 2
Offset: 1

Views

Author

Gary W. Adamson & Mats Granvik, Jul 27 2008

Keywords

Comments

Right border = A020639, Lpf(n): (1, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11,...).
Left border = mu(n), A008683: (1, -1, -1, 0, -1, 1, -1,...).
Row sums = a signed version of A097945: (1, -1, -2, 0, -4, 2, -6,...) such that parity = (+) iff mu(n) = +.

Examples

			First few rows of the triangle =
1;
-1, 2;
-1, 0, 3;
0, -2, 0, 2;
-1, 0, 0, 0, 5;
1, -2, -3, 0, 0, 2;
-1, 0, 0, 0, 0, 0, 7;
0, 0, 0, -2, 0, 0, 0, 2;
0, 0, -3, 0, 0, 0, 0, 0, 3;
1, -2, 0, 0, -5, 0, 0, 0, 0, 2;
-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11;
0, 2, 0, -2, 0, -2, 0, 0, 0, 0, 0, 2;
...
		

Crossrefs

Formula

Triangle read by rows, A054525 * (A020639 * 0^(n-k)), 1<=k<=n; where A020639 = Lpf(n): (1, 2, 3, 2, 5, 2, 7, 2, 3, 2,...) and A054525 = the Mobius transform.

A265204 Sum of phi(i) over squarefree numbers i <= n.

Original entry on oeis.org

1, 2, 4, 4, 8, 10, 16, 16, 16, 20, 30, 30, 42, 48, 56, 56, 72, 72, 90, 90, 102, 112, 134, 134, 134, 146, 146, 146, 174, 182, 212, 212, 232, 248, 272, 272, 308, 326, 350, 350, 390, 402, 444, 444, 444, 466, 512, 512, 512, 512, 544, 544, 596, 596, 636, 636, 672, 700, 758, 758, 818, 848, 848, 848, 896, 916, 982, 982, 1026, 1050
Offset: 1

Views

Author

Jeffrey Shallit, Dec 04 2015

Keywords

Comments

Partial sums of absolute values of A097945. - Robert Israel, Dec 10 2015

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 0, a(n-1))+
          `if`(issqrfree(n), phi(n), 0)
        end:
    seq(a(n), n=1..70);  # Alois P. Heinz, Dec 04 2015
    N:= 1000: # to get a(1) to a(N)
    V:= Vector(N, 1):
    Primes:= select(isprime, [2,seq(i,i=3..N,2)]):
    for p in Primes do
      J1:= [seq(i,i=p..N,p)];
      J2:= [seq(i,i=p^2..N,p^2)];
      V[J1]:= V[J1] * (p-1);
      V[J2]:= 0;
    od:
    ListTools[PartialSums](convert(V,list)); # Robert Israel, Dec 10 2015
  • Mathematica
    Table[Sum[EulerPhi@ i, {i, Select[Range@ n, SquareFreeQ]}], {n, 70}] (* Michael De Vlieger, Dec 10 2015 *)
  • PARI
    a(n) = sum(i=1, n, eulerphi(i)*issquarefree(i)) \\ Anders Hellström, Dec 04 2015
    
  • Perl
    use ntheory ":all"; sub an { vecsum(map { is_square_free($) ? euler_phi($) : () } 1..shift); } say an($) for 1..70; # _Dana Jacobsen, Dec 10 2015
Previous Showing 11-20 of 23 results. Next