cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 39 results. Next

A318738 Numbers n=2*k-1 where Sum_{j=1..k} (-1)^(j+1) * d(2*j-1) achieves a new negative record, with d(n) = number of divisors of n (A000005).

Original entry on oeis.org

3, 15, 39, 63, 99, 259, 319, 403, 675, 679, 943, 1615, 1779, 2919, 4899, 5775, 7399, 7407, 13475, 13479, 25635, 29835, 29839, 44955, 78463, 78475, 108927, 108931, 126819, 136959, 136975, 136983, 244875, 244879, 256355, 276675, 276687, 457275, 530139
Offset: 1

Views

Author

Hugo Pfoertner, Sep 08 2018

Keywords

Examples

			a(1) = 3, because s = d(1)-d(3) = 1-2 = -1 is the first negative record.
a(2) = 15, because s = d(1)-d(3)+d(5)-d(7)+d(9)-d(11)+d(13)-d(15) =
1-2+2-2+3-2+2-4 = -2 is the first sum less than -1.
		

Crossrefs

Programs

  • PARI
    s=0;j=-1;smin=0;forstep(k=1,600000,2,j=-j;s=s+j*numdiv(k);if(s
    				

A095374 One less than the number of divisors of 2*n + 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 3, 1, 1, 3, 3, 1, 3, 1, 1, 5, 1, 2, 3, 1, 3, 3, 1, 1, 5, 3, 1, 3, 1, 1, 5, 3, 1, 4, 1, 3, 3, 1, 3, 3, 3, 1, 5, 1, 1, 7, 1, 1, 3, 1, 3, 5, 3, 2, 3, 3, 1, 3, 1, 3, 7, 1, 1, 3, 3, 3, 5, 1, 1, 5, 3, 1, 3, 3, 1, 7, 1, 2, 5, 1, 5
Offset: 1

Views

Author

Labos Elemer, Jun 07 2004

Keywords

Comments

Number of special divisors of A095372(n) with A095372(k) form.

Examples

			A095372(22) is divisible by {91, 9091, 90909091, 90909090909091, A095372(22)}, thus a(22)=5.
G.f.= x + x^2 + x^3 + 2*x^4 + x^5 + x^6 + 3*x^7 + x^8 + x^9 + 3*x^10 + x^11 + 2*x^12 + ...
		

Crossrefs

Programs

  • Mathematica
    g[x_]:=1+90*(100^x-1)/99 t=Table[1+90*(100^n-1)/99, {n, 1, 35}]; Do[Print[{w, is=Intersection[Divisors[g[w]], t], Length[is]}], {w, 1, 35}]
    Table[DivisorSigma[0,2n+1],{n,90}]-1 (* Harvey P. Dale, Oct 31 2015 *)
    Table[Sum[1 - Ceiling@ # + Floor@ # &[(n + i)/(n - i + 1)], {i, n}], {n, 87}] (* Michael De Vlieger, Feb 27 2017 *)
  • PARI
    {a(n) = if( n<0, 0, numdiv(2*n + 1) - 1)} /* Michael Somos, Aug 30 2012 */

Formula

a(n) = A023645(2*n + 1) = A000005(2*n + 1) - 1.
a(n) = Sum_{i=1..n} 1-ceiling((n+i)/(n-i+1))+floor((n+i)/(n-i+1)). - Wesley Ivan Hurt, Feb 26 2017
O.g.f.: Sum_{n >= 1} x^n/(1 - x^(2*n+1)) = x/(1 - x) + Sum_{n >= 1} x^(2*n*(n+1))*(1 + x^(2*n+1))/(1 - x^(2*n+1)). - Peter Bala, Mar 04 2019
a(n) = A099774(n+1) - 1. - Bernard Schott, Mar 04 2019
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 3 + 3*log(2)) / 2, where gamma is Euler's constant (A001620). - Amiram Eldar, Mar 15 2025

A263084 a(n) = A263086(n) - A263085(n).

Original entry on oeis.org

1, 2, 4, 6, 7, 11, 13, 14, 18, 22, 22, 28, 29, 31, 37, 41, 41, 46, 48, 52, 58, 62, 60, 68, 71, 73, 79, 83, 83, 93, 95, 96, 100, 104, 108, 118, 120, 120, 124, 132, 131, 141, 141, 145, 155, 157, 157, 165, 169, 172, 178, 184, 180, 190, 196, 202, 208, 210, 208, 220, 221, 223, 231, 237, 241, 251, 251, 251, 257, 267, 267, 278
Offset: 1

Views

Author

Antti Karttunen, Oct 12 2015

Keywords

Comments

See also the Plot2-link at A263086.

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[Subtract @@ DivisorSigma[0, 2*n - {0, 1}], {n, 1, 100}]] (* Amiram Eldar, Jan 25 2025 *)
  • PARI
    list(lim) = {my(s = 0); for(n = 1, lim, s += numdiv(2*n) - numdiv(2*n-1); print1(s, ", "));} \\ Amiram Eldar, Jan 25 2025
  • Scheme
    (define (A263084 n) (- (A263086 n) (A263085 n)))
    

Formula

a(n) = A263086(n) - A263085(n).
a(n) ~ n * (log(n) + 2*gamma - log(2) - 1), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 25 2025

A274659 Triangle entry T(n, m) gives the m-th contribution T(n, m)*sin((2*m+1)*v) to the coefficient of q^n in the Fourier expansion of Jacobi's elliptic sn(u|k) function when expressed in the variables v = u/(2*K(k)/Pi) and q, the Jacobi nome, written as series in (k/4)^2. K is the real quarter period of elliptic functions.

Original entry on oeis.org

1, 1, 1, -1, 0, 1, -1, -2, 0, 1, 2, 1, -2, 0, 1, 2, 3, 0, -2, 0, 1, -4, -2, 3, 0, -2, 0, 1, -4, -5, 1, 3, 0, -2, 0, 1, 7, 3, -6, 0, 3, 0, -2, 0, 1, 7, 9, -2, -6, 0, 3, 0, -2, 0, 1, -11, -5, 11, 1, -6, 0, 3, 0, -2, 0, 1, -11, -15, 3, 11, 0, -6, 0, 3, 0, -2, 0, 1, 17, 9, -17, -2, 11, 0, -6, 0, 3, 0, -2, 0, 1
Offset: 0

Views

Author

Wolfdieter Lang, Jul 18 2016

Keywords

Comments

If one takes the row polynomials as R(n, x) = Sum_{m=0..n} T(n, m)*x^(2*m+1), n >= 0, Jacobi's elliptic sn(u|k) function in terms of the new variables v and q becomes sn(u|k) = Sum_{n>=0} R(n, x)*q^n, if one replaces in R(n, x) x^j by sin(j*v).
v=v(u,k^2) and q=q(k^2) are computed with the help of A038534/A056982 for (2/Pi)*K and A002103 for q expanded in powers of (k/4)^2.
A test for sn(u|k) with u = 1, k = sqrt(1/2), that is v approximately 0.8472130848 and q approximately 0.04321389673, with rows n=0..10 (q powers not exceeding 10) gives 0.8030018002 to be compared with sn(1|sqrt(1/2)) approximately 0.8030018249.
For the derivation of the Fourier series formula of sn given in Abramowitz-Stegun (but there the notation sn(u|m=k^2) is used for sn(u|k)) see, e.g., Whittaker and Watson, p. 511 or Armitage and Eberlein, Exercises on p. 55.
For the cn expansion see A274661.
See also the W. Lang link, equations (34) and (35).

Examples

			The triangle T(n, m) begins:
      m  0   1  2  3  4  5  6  7  8  9 10 11
n\ 2m+1  1   3  5  7  9 11 13 15 17 19 21 23
0:       1
1:       1   1
2:      -1   0  1
3:      -1  -2  0  1
4:       2   1 -2  0  1
5:       2   3  0 -2  0  1
6:      -4  -2  3  0 -2  0  1
7:      -4  -5  1  3  0 -2  0  1
8:       7   3 -6  0  3  0 -2  0  1
9:       7   9 -2 -6  0  3  0 -2  0  1
10:    -11  -5 11  1 -6  0  3  0 -2  0  1
11:    -11 -15  3 11  0 -6  0  3  0 -2  0  1
...
T(4, 0) = 2 from the x^1 term in b(0, x)*a(4) + b(2, x)*a(2) + b(4, x)*a(0), that is x^1*3 + x^1*(-2) + x^1*1 = +2*x^1.
n=4: R(4, x) = 2*x^1 + 1*x^3 - 2*x^5 + 0*x^7 + 1*x^9, that is the sn(u|k) contribution of order q^4 in the new variables v and q is (2*sin(1*v) + 1*sin(3*v) - 2*sin(5*v) + 1*sin(9*v))*q^4.
		

References

  • J. V. Armitage and W. F. Eberlein, Elliptic Functions, London Mathematical Society, Student Texts 67, Cambridge University Press, 2006.
  • E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, fourth edition, reprinted, 1958, Cambridge at the University Press.

Crossrefs

Formula

T(n, m) = [x^(2*m+1)]Sum_{j=0..n} b(j, x)*a(n-j), with a(k) = A274621(k/2) if k is even and a(k) = 0 if k is odd, and b(j, x) = Sum_{r | 2*j+1} x^r = Sum_{k=1..A099774(j+1)} x^(A274658(j, k)), for j >= 0.

A074821 Numbers k such that tau(k) = tau(2k+1).

Original entry on oeis.org

2, 3, 4, 5, 10, 11, 23, 27, 29, 34, 38, 41, 46, 53, 55, 57, 62, 76, 77, 83, 89, 91, 93, 106, 113, 118, 123, 129, 131, 133, 136, 143, 145, 159, 161, 173, 177, 179, 185, 191, 201, 203, 205, 206, 212, 213, 218, 226, 232, 233, 235, 239, 251, 259, 267, 281, 291, 293
Offset: 1

Views

Author

Benoit Cloitre, Sep 08 2002

Keywords

Comments

If a term is a perfect square, then its square root must be in A001542. The first few such terms are the squares of 2, 2378, 93222358, 165326326037771920630... - Ivan Neretin, May 25 2016

Crossrefs

Cf. A000005 (tau), A001542, A005384 (subsequence), A099774.

Programs

  • Mathematica
    Select[Range[300], DivisorSigma[0, #] == DivisorSigma[0, 2 # + 1] &] (* Ivan Neretin, May 25 2016 *)
  • PARI
    isok(k) = numdiv(k) == numdiv(2*k+1); \\ Amiram Eldar, May 08 2025

A114000 Triangle read by rows: column k has g.f. = Sum_{k>0} x^k/(1-x^(2*k+1)).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Paul Barry, Nov 12 2005

Keywords

Comments

Number triangle related to divisors of 2n+1. Row n has a 1 in column k iff 2*k+1 divides 2*n+1. - N. J. A. Sloane, Dec 23 2020

Examples

			Triangle begins
1
1, 1,
1, 0, 1,
1, 0, 0, 1,
1, 1, 0, 0, 1,
1, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0, 0, 1,
1, 1, 1, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0, 0, 0, 0, 0, 1,
1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1
...
		

Crossrefs

Rows sums are A099774. Rows as decimals give A114001.

Programs

Extensions

Edited by N. J. A. Sloane, Dec 23 2020

A114001 Rows of A114000 expressed as decimals (a sequence related to the number of divisors of 2n-1).

Original entry on oeis.org

1, 3, 5, 9, 25, 33, 65, 225, 257, 513, 1665, 2049, 5121, 12801, 16385, 32769, 100353, 180225, 262145, 794625, 1048577, 2097153, 7634945, 8388609, 18874369, 50462721, 67108865, 171966465, 403177473, 536870913, 1073741825
Offset: 0

Views

Author

Paul Barry, Nov 12 2005

Keywords

Examples

			a(5)=25 converts to 11001 in binary, which has sum of digits equal to 3, and 9=2*5-1 has 3 divisors.
		

Crossrefs

Cf. A114000, A099774 (binary weight), A339916 (bit reversal).

Programs

  • Mathematica
    A114001[n_]:=FromDigits[Boole[Divisible[2n+1,2Range[0,n]+1]],2];
    Array[A114001,50,0] (* Paolo Xausa, Dec 04 2023 *)

Extensions

Edited by N. J. A. Sloane, Dec 23 2020
Offset changed to 0 by Paolo Xausa, Dec 04 2023

A116518 Odd numbers k such that k and phi(k) have the same number of divisors.

Original entry on oeis.org

1, 3, 15, 255, 65535, 77805, 161595, 331695, 575025, 664335, 765765, 1601145, 2250885, 2380833, 2690415, 3271905, 3828825, 4107285, 5181813, 5778045, 5871285, 6007365, 6613425, 7448805, 9258795, 9787869, 9935055, 10503675, 10554705, 10724805, 11060595
Offset: 1

Views

Author

Max Alekseyev, Mar 24 2006

Keywords

Comments

From Farideh Firoozbakht, Aug 28 2006: (Start)
For n < 6, the product of the first n Fermat primes is in the sequence because if m = 2^(2^n)-1 and n < 6 then d(m) = d(phi(m)) = 2^n.
(1). If p is a Sophie Germain prime greater than 3 then m = 69615*(2p+1) (A005385) is in the sequence because d(m) = d(phi(m)) = 96. 765765, 1601145, 3271905, 4107285, 5778045, 7448805, ... is the related subsequence.
(2). If p is a prime greater than 3 such that 4p+1 is prime then m = 700245*(4p+1) (A090866) is in the sequence because d(m) = d(phi(m)) = 160. 20307105, 37112985, 104336505, 121142385, ... is the related subsequence. (End)
It is an open question whether this sequence contains infinitely many terms; see Bellaouar et al., 2023. - Allen Stenger, Feb 16 2024

Crossrefs

Subsequence of A070418. Cf. A005384.

Programs

  • Mathematica
    Select[Range[1,10510001,2],DivisorSigma[0,#]==DivisorSigma[ 0, EulerPhi[#]]&] (* Harvey P. Dale, Jan 30 2013 *)
  • PARI
    forstep(n=1,10^8,2,if(numdiv(n)==numdiv(eulerphi(n)),print1(n,", ")))

A113414 Expansion of Sum_{k>0} x^k/(1-(-x^2)^k).

Original entry on oeis.org

1, 1, 0, 1, 2, 2, 0, 1, 1, 2, 0, 2, 2, 2, 0, 1, 2, 3, 0, 2, 0, 2, 0, 2, 3, 2, 0, 2, 2, 4, 0, 1, 0, 2, 0, 3, 2, 2, 0, 2, 2, 4, 0, 2, 2, 2, 0, 2, 1, 3, 0, 2, 2, 4, 0, 2, 0, 2, 0, 4, 2, 2, 0, 1, 4, 4, 0, 2, 0, 4, 0, 3, 2, 2, 0, 2, 0, 4, 0, 2, 1, 2, 0, 4, 4, 2, 0, 2, 2, 6, 0, 2, 0, 2, 0, 2, 2, 3, 0, 3, 2, 4, 0, 2, 0
Offset: 1

Views

Author

Michael Somos, Oct 29 2005

Keywords

Crossrefs

A001227(n) = a(2*n), A008441(n) = a(4*n+1), A099774(n) = a(4*n+2).

Programs

  • PARI
    a(n)=if(n<1, 0, sumdiv(n, d, kronecker(-4, d)+2*(n%2==0)*(d%4==3)))
    
  • PARI
    {a(n)=if(n<1, 0, if(n%4==3, 0, if(n%4==2, numdiv(n/2), if(n%4==0, sumdiv(n,d,d%2), sumdiv(n,d,(-1)^(d\2))))))}
    
  • PARI
    {a(n)=if(n<1, 0, polcoeff( sum(k=1,sqrtint(8*n+1)\2, (-1)^(k%4==2)*x^((k^2+k)/2)/(1-(-1)^(k\2)*x^k), x*O(x^n)), n))}
    
  • PARI
    {a(n)=if(n<1, 0, polcoeff( sum(k=1,n, x^k/(1-(-x^2)^k), x*O(x^n)), n))}

Formula

Moebius transform is period 8 sequence [1, 0, -1, 0, 1, 2, -1, 0, ...].
G.f.: Sum_{k>0} x^k/(1-(-x^2)^k) = Sum_{k>0} x^k/(1+x^(2k))+2x^(6k)/(1-x^(8k)) = Sum_{k>0} -(-1)^k x^(2k-1)/(1+(-1)^k*x^(2k-1)).
a(4n+3) = 0.
a(n) = A001826(n) + (-1)^n * A001842(n). - David Spies, Sep 26 2012

A174199 Bisection of A137921.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 3, 5, 3, 5, 5, 5, 3, 6, 3, 6, 5, 5, 3, 7, 5, 5, 6, 6, 3, 7, 3, 6, 6, 5, 7, 8, 3, 5, 6, 8, 3, 8, 3, 7, 8, 5, 3, 9, 5, 7, 6, 7, 3, 9, 6, 8, 6, 5, 3, 11, 3, 5, 9, 7, 7, 8, 3, 7, 6, 10, 3, 11, 3, 5, 9, 7, 7, 8, 3, 10, 8, 5, 3, 11, 7, 5, 6, 9, 3, 12, 6, 7, 6, 5, 7, 11, 3, 8, 10, 10, 3, 9, 3, 9, 11, 5, 3, 12, 3, 9, 6, 10, 3, 9, 7, 7, 10, 5, 7, 14
Offset: 1

Views

Author

N. J. A. Sloane, Nov 26 2010

Keywords

Comments

Since the other bisection (A099774) is known - it is the bisection of A000005 - the obvious problem is to find a formula for this sequence.

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(2*n, d, ((2*n)%(d+1) != 0)); \\ Amiram Eldar, Jan 18 2024

Formula

From Amiram Eldar, Jan 18 2024: (Start)
a(n) = A137921(2*n).
Sum_{k=1..n} a(k) ~ (n/2) * (3*log(n) + 6*gamma - 7 + log(2)), where gamma is Euler's constant (A001620). (End)
Previous Showing 21-30 of 39 results. Next