cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A259147 Decimal expansion of phi(exp(-Pi/2)), where phi(q) = Product_{n>=1} (1-q^n) is the Euler modular function.

Original entry on oeis.org

7, 4, 9, 3, 1, 1, 4, 7, 7, 8, 0, 0, 0, 0, 2, 7, 8, 7, 4, 2, 9, 6, 2, 5, 6, 5, 8, 7, 8, 3, 3, 8, 0, 3, 1, 1, 9, 0, 4, 0, 9, 2, 5, 2, 7, 9, 0, 1, 1, 7, 3, 9, 2, 8, 3, 1, 2, 0, 6, 7, 3, 1, 0, 1, 3, 1, 3, 5, 8, 8, 5, 3, 7, 5, 5, 1, 7, 4, 7, 2, 5, 8, 6, 1, 3, 4, 7, 5, 6, 3, 5, 7, 6, 5, 5, 8, 5, 8, 4, 0, 4, 6, 3, 7, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 19 2015

Keywords

Examples

			0.74931147780000278742962565878338031190409252790117392831206731...
		

Crossrefs

Cf. A048651 phi(1/2), A100220 phi(1/3), A100221 phi(1/4), A100222 phi(1/5), A132034 phi(1/6), A132035 phi(1/7), A132036 phi(1/8), A132037 phi(1/9), A132038 phi(1/10), A368211 phi(exp(-Pi/16)), A292862 phi(exp(-Pi/8)), A292863 phi(exp(-Pi/4)), A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A259151 phi(exp(-8*Pi)), A363019 phi(exp(-10*Pi)), A363020 phi(exp(-12*Pi)), A292864 phi(exp(-16*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    phi[q_] := QPochhammer[q, q]; RealDigits[phi[Exp[-Pi/2]], 10, 105] // First

Formula

phi(q) = QPochhammer(q,q) = (q;q)_infinity.
phi(q) also equals theta'(1, 0, sqrt(q))^(1/3)/(2^(1/3)*q^(1/24)), where theta' is the derivative of the elliptic theta function theta(a,u,q) w.r.t. u.
phi(exp(-Pi/2)) = ((sqrt(2) - 1)^(1/3)*(4 + 3*sqrt(2))^(1/24) * exp(Pi/48) * Gamma(1/4))/(2^(5/6)*Pi^(3/4)).
phi(exp(-Pi/2)) = (sqrt(2)-1)^(1/4) * exp(Pi/48) * Gamma(1/4)/(2^(13/16)*Pi^(3/4)). - Vaclav Kotesovec, Jul 03 2017

A015002 q-factorial numbers for q=4.

Original entry on oeis.org

1, 1, 5, 105, 8925, 3043425, 4154275125, 22686496457625, 495586515116818125, 43304845277422684580625, 15136126045591163828042953125, 21161832960467051739150680807015625, 118345540457280742481284963098558216328125, 2647344887069536899904944217513732945696167890625
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else (4^n-1)*Self(n-1)/3: n in [1..15]]; // Vincenzo Librandi, Oct 22 2012
  • Mathematica
    RecurrenceTable[{a[1]==1, a[n]==((4^n - 1) * a[n-1])/3}, a, {n, 15}] (* Vincenzo Librandi, Oct 27 2012 *)
    Table[QFactorial[n, 4], {n, 15}] (* Bruno Berselli, Aug 14 2013 *)

Formula

a(n) = Product_{k=1..n} (q^k - 1) / (q - 1) with q=4.
a(0) = 1, a(n) = (4^n-1)*a(n-1)/3. - Vincenzo Librandi, Oct 27 2012
From Amiram Eldar, Jul 05 2025: (Start)
a(n) = Product_{k=1..n} A002450(k).
a(n) ~ c * 2^(n*(n+1))/3^n, where c = A100221. (End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Sep 08 2021

A132020 Decimal expansion of Product_{k>=0} (1 - 1/(2*4^k)).

Original entry on oeis.org

4, 1, 9, 4, 2, 2, 4, 4, 1, 7, 9, 5, 1, 0, 7, 5, 9, 7, 7, 0, 9, 9, 5, 6, 1, 0, 7, 7, 0, 2, 9, 7, 4, 2, 5, 2, 2, 3, 3, 9, 5, 3, 2, 3, 4, 3, 9, 2, 6, 6, 6, 7, 4, 9, 0, 8, 0, 4, 4, 9, 9, 1, 6, 6, 3, 1, 7, 7, 2, 0, 5, 0, 8, 7, 2, 7, 0, 9, 1, 9, 3, 9, 1, 0, 0, 2, 3, 2, 4, 5, 4, 7, 4, 2, 3, 8, 1, 9, 5, 5, 0, 2, 8, 5, 8
Offset: 0

Views

Author

Hieronymus Fischer, Aug 14 2007

Keywords

Comments

This is the limiting probability that a large random symmetric binary matrix is nonsingular (cf. A086812, A048651). In other words, equals Lim_{n->oo} A086812(n)/A006125(n+1).- H. Tracy Hall, Sep 07 2024

Examples

			0.41942244179510759770995610770297425223395323439266674908044991663177...
		

Crossrefs

Programs

  • Maple
    evalf(1+sum((-1)^n*2^(n*(n-1)/2)/product(2^k-1, k=1..n), n=1..infinity), 120); # Robert FERREOL, Feb 23 2020
  • Mathematica
    RealDigits[ Product[1 - 1/(2*4^i), {i, 0, 175}], 10, 111][[1]] (* Robert G. Wilson v, May 25 2011 *)
    RealDigits[QPochhammer[1/2, 1/4], 10, 105][[1]] (* Jean-François Alcover, Nov 18 2015 *)
  • PARI
    prodinf(k=0,1-1.>>(2*k+1)) \\ Charles R Greathouse IV, Nov 16 2012

Formula

Equals lim inf_{n->oo} Product_{k=0..floor(log_4(n))} floor(n/4^k)*4^k/n.
Equals lim inf_{n->oo} A132028(n)/n^(1+floor(log_4(n)))*4^((1/2)*(1+floor(log_4(n)))*floor(log_4(n))).
Equals lim inf_{n->oo} A132028(n)/n^(1+floor(log_4(n)))*4^A000217(floor(log_4(n))).
Equals (1/2)*exp(-Sum_{n>0} (4^(-n)*(Sum_{k|n} 1/(k*2^k)))).
Equals lim inf_{n->oo} A132028(n)/A132028(n+1).
Equals Product_{k>0} (1-1/(2^k+1)). - Robert G. Wilson v, May 25 2011
From Robert FERREOL, Feb 23 2020: (Start)
Equals Product_{k>0} (1 + 1/2^k)^(-1) = 2/A081845.
Equals 1 + Sum_{n>=1} (-1)^n*2^(n*(n-1)/2)/((2-1)*(2^2-1)*...*(2^n-1)). (End)
From Peter Bala, Jan 15 2021: (Start)
Constant C = Sum_{n >= 0} 2^n/Product_{k = 1..n} (1 - 4^k).
Faster converging series:
2*C = (1/2)*Sum_{n >= 0} 2^(-n)/Product_{k = 1..n} (1 - 4^k);
(2^4)*C = 7*Sum_{n >= 0} 2^(-3*n)/Product_{k = 1..n} (1 - 4^k);
(2^9)*C = 7*31*Sum_{n >= 0} 2^(-5*n)/Product_{k = 1..n} (1 - 4^k), and so on.
Slower converging series:
C = -Sum_{n >= 0} 2^(3*n)/Product_{k = 1..n} (1 - 4^k);
7*C = Sum_{n >= 0} 2^(5*n)/Product_{k = 1..n} (1 - 4^k);
7*31*C = -Sum_{n >= 0} 2^(7*n)/Product_{k = 1..n} (1 - 4^k), and so on. (End)
Equals Product_{n>=0} (1 - 1/A004171(n)). - Amiram Eldar, May 09 2023

Extensions

Name corrected by Charles R Greathouse IV, Nov 16 2012

A090770 a(n) = 2^(n^2 + 2n + 1)*Product_{j=1..n} (4^j - 1).

Original entry on oeis.org

2, 48, 23040, 185794560, 24257337753600, 50821645356918374400, 1704875112338069448032256000, 915241991059360703024740763172864000, 7861748876453505095791592854589753555681280000, 1080506416218846625176535970968094253434513802154475520000, 2376056471052200653607636735377527394627947719754523173734842368000000
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2004

Keywords

Comments

The order of the p-Clifford group for an odd prime p is a*p^(n^2+2n+1)*Product_{j=1..n} (p^(2*j)-1), where a = gcd(p+1,4). This is the sequence obtained by (illegally) setting p = 2.

Crossrefs

Cf. A092299 and A092301 (p=3), A092300 and A089989 (p=5), A090768 and A090769 (p=7).
A bisection of A003053, cf. A003923.

Programs

  • Mathematica
    Table[2^(n^2+2n+1) Product[4^j-1,{j,n}],{n,0,10}] (* Harvey P. Dale, May 14 2022 *)
  • Python
    from math import prod
    def A090770(n): return prod((1<Chai Wah Wu, Jun 20 2022

Formula

a(n) ~ c * 2^((n+1)*(2*n+1)), where c = A100221. - Amiram Eldar, Jul 06 2025

A003788 Order of universal Chevalley group A_n (4).

Original entry on oeis.org

1, 60, 60480, 987033600, 258492255436800, 1083930404878024704000, 72736898347485916060188672000, 78099458182389588115529148326215680000, 1341733356588640095264385107865053233298800640000
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Magma
    [&*[(4^n - 4^k): k in [0..n-1]]/3: n in [1..8]]; // Vincenzo Librandi, Sep 19 2015
  • Mathematica
    f[m_, n_] := m^(n (n + 1)/2) Product[m^k - 1, {k, 2, n + 1}];
    f[4, #] & /@ Range[0, 8] (* Michael De Vlieger, Sep 18 2015 *)

Formula

Numbers so far appear to equal A053291(n)/3. - Ralf Stephan, Mar 30 2004
a(n) = A(4,n) where A(q,n) is defined in A003787. - Sean A. Irvine, Sep 18 2015
a(n) ~ c * 4^(n*(n+2)), where c = (4/3) * A100221 = 0.918050049493... . - Amiram Eldar, Jul 07 2025

Extensions

One more term from Sean A. Irvine, Sep 18 2015

A003923 Order of universal Chevalley group B_n (2) or symplectic group Sp(2n,2).

Original entry on oeis.org

1, 6, 720, 1451520, 47377612800, 24815256521932800, 208114637736580743168000, 27930968965434591767112450048000, 59980383884075203672726385914533642240000, 2060902435720151186326095525680721766346957783040000, 1132992015386677099994486205757869431795095310094129168384000000
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

A bisection of A003053.

Programs

  • Maple
    for m from 0 to 50 do N:=2^(m^2)*mul( 4^i-1, i=1..m); lprint(N); od:
  • Mathematica
    a[n_] := 2^(n^2)*Times@@(4^Range[n]-1);
    Table[a[n], {n, 0, 8}] (* Jean-François Alcover, Aug 18 2022 *)
  • Python
    from math import prod
    def A003923(n): return (1 << n**2)*prod((1 << i)-1 for i in range(2,2*n+1,2)) # Chai Wah Wu, Jun 20 2022

Formula

a(n) = B(2,n) where B(q,n) is defined in A003920. - Sean A. Irvine, Sep 22 2015
a(n) ~ c * 2^(n*(2*n+1)), where c = A100221. - Amiram Eldar, Jul 07 2025

Extensions

Edited by N. J. A. Sloane, Dec 30 2008

A132028 Product{0<=k<=floor(log_4(n)), floor(n/4^k)}, n>=1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 16, 18, 20, 22, 36, 39, 42, 45, 64, 68, 72, 76, 100, 105, 110, 115, 144, 150, 156, 162, 196, 203, 210, 217, 512, 528, 544, 560, 648, 666, 684, 702, 800, 820, 840, 860, 968, 990, 1012, 1034, 1728, 1764, 1800, 1836, 2028, 2067, 2106, 2145, 2352
Offset: 1

Views

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

If n is written in base-4 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product d(m)d(m-1)d(m-2)...d(2)d(1)d(0)*d(m)d(m-1)d(m-2)...d(2)d(1)*d(m)d(m-1)d(m-2)...d(2)*...*d(m)d(m-1)d(m-2)*d(m)d(m-1)*d(m).

Examples

			a(26)=floor(26/4^0)*floor(26/4^1)*floor(26/4^2)=26*6*1=156; a(34)=544 since 34=202(base-4) and so
a(34)=202*20*2(base-4)=34*8*2=544.
		

Crossrefs

For formulas regarding a general parameter p (i.e. terms floor(n/p^k)) see A132264.
For the product of terms floor(n/p^k) for p=2 to p=12 see A098844(p=2), A132027(p=3)-A132033(p=9), A067080(p=10), A132263(p=11), A132264(p=12).
For the products of terms 1+floor(n/p^k) see A132269-A132272, A132327, A132328.

Formula

Recurrence: a(n)=n*a(floor(n/4)); a(n*4^m)=n^m*4^(m(m+1)/2)*a(n).
a(k*4^m)=k^(m+1)*4^(m(m+1)/2), for 0
Asymptotic behavior: a(n)=O(n^((1+log_4(n))/2)); this follows from the inequalities below.
a(n)<=b(n), where b(n)=n^(1+floor(log_4(n)))/4^((1+floor(log_4(n)))*floor(log_4(n))/2); equality holds for n=k*4^m, 0=0. b(n) can also be written n^(1+floor(log_4(n)))/4^A000217(floor(log_4(n))).
Also: a(n)<=2^(1/4)*n^((1+log_4(n))/2)=1.189207...*4^A000217(log_4(n)), equality holds for n=2*4^m, m>=0.
a(n)>c*b(n), where c=0.4194224417951075977... (see constant A132020).
Also: a(n)>c*2^(1/4)*n^((1+log_4(n))/2)=0.498780...*4^A000217(log_4(n)).
lim inf a(n)/b(n)=0.4194224417951075977..., for n-->oo.
lim sup a(n)/b(n)=1, for n-->oo.
lim inf a(n)/n^((1+log_4(n))/2)=0.4194224417951075977...*2^(1/4), for n-->oo.
lim sup a(n)/n^((1+log_4(n))/2)=2^(1/4), for n-->oo.
lim inf a(n)/a(n+1)=0.4194224417951075977... for n-->oo (see constant A132020).

A014115 Order of a certain Clifford group in dimension 2^n (the automorphism group of the Barnes-Wall lattice for n != 3).

Original entry on oeis.org

2, 8, 1152, 2580480, 89181388800, 48126558103142400, 409825748158189771161600, 55428899652335313894424707072000
Offset: 0

Keywords

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 129.

Crossrefs

Agrees with A014116 except at n=3.

Programs

  • Maple
    2^(n^2+n+1) * (2^n - 1) * product('2^(2*i)-1','i'=1..n-1);
  • Mathematica
    a[n_] := 2^(n^2+n+1)*(2^n - 1) * Product[4^i - 1, {i, 1, n-1}]; a[0] = 2; Array[a, 8, 0] (* Amiram Eldar, Jul 07 2025 *)
  • Python
    from math import prod
    def A014115(n): return 2 if n == 0 else ((1<Chai Wah Wu, Jun 20 2022

Formula

From Amiram Eldar, Jul 07 2025: (Start)
a(n) = 2^(n^2+n+1) * (2^n-1) * Product_{i=1..n-1} (2^(2*i)-1).
a(n) ~ c * 2^(2*n^2+n+1), where c = A100221. (End)

A027638 Order of 2^n X 2^n unitary group H_n acting on Siegel modular forms.

Original entry on oeis.org

4, 96, 46080, 371589120, 48514675507200, 101643290713836748800, 3409750224676138896064512000, 1830483982118721406049481526345728000, 15723497752907010191583185709179507111362560000
Offset: 0

Keywords

Crossrefs

Programs

  • Magma
    A027638:= func< n | n eq 0 select 4 else 2^(n^2+2*n+2)*(&*[4^j-1: j in [1..n]]) >;
    [A027638(n): n in [0..15]]; // G. C. Greubel, Aug 04 2022
    
  • Maple
    seq( 2^(n^2+2*n+2)*product(4^i -1, i=1..n), n=0..12);
  • Mathematica
    Table[2^(n^2+2n+2) Product[4^k-1,{k,n}],{n,0,10}] (* Harvey P. Dale, May 21 2018 *)
  • PARI
    a(n) = my(ret=1); for(i=1,n, ret = ret<<(2*i)-ret); ret << (n^2+2*n+2); \\ Kevin Ryde, Aug 13 2022
  • SageMath
    from sage.combinat.q_analogues import q_pochhammer
    def A027638(n): return (-1)^n*2^(n^2 + 2*n + 2)*q_pochhammer(n, 4, 4)
    [A027638(n) for n in (0..15)] # G. C. Greubel, Aug 04 2022
    

Formula

a(n) = A003956(n)/2.
a(n) = 2^(n^2 + 2*n + 2) * Product_{j=1..n} (4^j - 1).
a(n) ~ c * 2^(2*n^2+3*n+2), where c = A100221. - Amiram Eldar, Jul 06 2025

A258459 Number of partitions of n into parts of exactly 4 sorts which are introduced in ascending order.

Original entry on oeis.org

1, 11, 77, 438, 2216, 10422, 46731, 202814, 860586, 3593561, 14834956, 60735095, 247155292, 1001318246, 4043482110, 16288762319, 65500024027, 263035832734, 1055252430510, 4230340216034, 16949359882259, 67881449170593, 271777855641517, 1087867649157513
Offset: 4

Author

Alois P. Heinz, May 30 2015

Keywords

Crossrefs

Column k=4 of A256130.
Cf. A320546.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
        end:
    T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
    a:= n-> T(n,4):
    seq(a(n), n=4..35);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, k*b[n - i, i, k]]]];
    T[n_, k_] := Sum[b[n, n, k - i]*(-1)^i/(i!*(k - i)!), {i, 0, k}];
    Table[T[n, 4], {n, 4, 35}] (* Jean-François Alcover, May 25 2018, translated from Maple *)

Formula

a(n) ~ c * 4^n, where c = 1/(24*Product_{n>=1} (1-1/4^n)) = 1/(24*QPochhammer[1/4, 1/4]) = 1/(24*A100221) = 0.060514735102066542326446... . - Vaclav Kotesovec, Jun 01 2015
Previous Showing 11-20 of 32 results. Next