cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 62 results. Next

A050468 a(n) = Sum_{d|n, n/d=1 mod 4} d^4 - Sum_{d|n, n/d=3 mod 4} d^4.

Original entry on oeis.org

1, 16, 80, 256, 626, 1280, 2400, 4096, 6481, 10016, 14640, 20480, 28562, 38400, 50080, 65536, 83522, 103696, 130320, 160256, 192000, 234240, 279840, 327680, 391251, 456992, 524960, 614400, 707282, 801280, 923520, 1048576, 1171200
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Comments

Multiplicative because it is the Dirichlet convolution of A000583 = n^4 and A101455 = [1 0 -1 0 1 0 -1 ...], which are both multiplicative. - Christian G. Bower, May 17 2005
Called E'_4(n) by Hardy.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = x + 16*x^2 + 80*x^3 + 256*x^4 + 626*x^5 + 1280*x^6 + 2400*x^7 + 4096*x^8 + ...
		

References

  • Emil Grosswald, Representations of Integers as Sums of Squares, Springer-Verlag, NY, 1985, p. 120.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Chelsea Publishing Company, New York 1959, p. 135, section 9.3. MR0106147 (21 #4881)

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(4), 5), 34); A[2] + 16*A[3]; /* Michael Somos, May 03 2015 */
  • Mathematica
    edashed[r_,n_] := Plus@@(Select[Divisors[n], Mod[n/#,4] == 1 &]^r) - Plus@@(Select[Divisors[n], Mod[n/#,4] == 3 &]^r); edashed[4,#] &/@Range[33] (* Ant King, Nov 10 2012 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^2] (EllipticTheta[ 2, 0, x]^8 + 4 EllipticTheta[ 2, 0, x^2]^8) / 256, {x, 0, 2 n}]; (* Michael Somos, Jan 11 2015 *)
    s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *)
    f[p_, e_] := (p^(4*e+4) - s[p]^(e+1))/(p^4 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (n/d%2) * (-1)^((n/d - 1)/2) * d^4))}; /* Michael Somos, Sep 12 2005 */
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, d^4 * kronecker( -4, n\d)))}; /* Michael Somos, Jan 14 2012 */
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^4 + A)^4 * (eta(x + A)^4 + 20 * x * eta(x^4 + A)^8 / eta(x + A)^4), n))}; /* Michael Somos, Jan 14 2012 */
    

Formula

a(2*n + 1) = A204342(n). a(2*n) = 16 * a(n).
G.f.: Sum_{n>=1} n^4*x^n/(1+x^(2*n)). - Vladeta Jovovic, Oct 16 2002
From Michael Somos, Jan 14 2012: (Start)
Expansion of eta(q^2)^2 * eta(q^4)^4 * (eta(q)^4 + 20 * eta(q^4)^8 / eta(q)^4) in powers of q.
a(n) is multiplicative with a(2^e) = 16^e, a(p^e) = ((p^4)^(e+1) - 1) / (p^4 - 1) if p == 1 (mod 4), a(p^e) = ((p^4)^(e+1) - (-1)^(e+1)) / (p^4 + 1) if p == 3 (mod 4). (End)
From Michael Somos, Jan 15 2012: (Start)
Expansion of theta_3(q^2) * (theta_2(q)^8 + 4 * theta_2(q^2)^8) / 256 in powers of q^2.
Expansion of x * phi(x)^2 * (psi(x)^8 + 4 * x * psi(x^2)^8) in powers of x where phi(), psi() are Ramanujan theta functions. (End)
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = (1/2) (t/i)^5 g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A204372. - Michael Somos, May 03 2015
From Amiram Eldar, Nov 04 2023: (Start)
Multiplicative with a(p^e) = (p^(4*e+4) - A101455(p)^(e+1))/(p^4 - A101455(p)).
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = 5*Pi^5/1536 (A175571). (End)
a(n) = Sum_{d|n} (n/d)^4*sin(d*Pi/2). - Ridouane Oudra, Sep 27 2024

A188510 Expansion of x*(1 + x^2)/(1 + x^4) in powers of x.

Original entry on oeis.org

0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0
Offset: 0

Views

Author

Michael Somos, Apr 10 2011

Keywords

Examples

			G.f. = x + x^3 - x^5 - x^7 + x^9 + x^11 - x^13 - x^15 + x^17 + x^19 - x^21 + ...
		

Crossrefs

Programs

  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x^2)/(1+x^4))); // G. C. Greubel, Aug 02 2018
  • Mathematica
    Table[KroneckerSymbol[-2, n], {n, 0, 104}] (* Wolfdieter Lang, May 30 2013 *)
    a[ n_] := Mod[n, 2] (-1)^Quotient[ n, 4]; (* Michael Somos, Apr 17 2015 *)
    CoefficientList[Series[x*(1+x^2)/(1+x^4), {x, 0, 60}], x] (* G. C. Greubel, Aug 02 2018 *)
    LinearRecurrence[{0,0,0,-1},{0,1,0,1},120] (* or *) PadRight[{},120,{0,1,0,1,0,-1,0,-1}] (* Harvey P. Dale, Jan 25 2023 *)
  • PARI
    {a(n) = (n%2) * (-1)^(n\4)};
    
  • PARI
    x='x+O('x^60); concat([0], Vec(x*(1+x^2)/(1+x^4))) \\ G. C. Greubel, Aug 02 2018
    

Formula

Euler transform of length 8 sequence [0, 1, 0, -2, 0, 0, 0, 1].
a(n) is multiplicative with a(2^e) = 0^e, a(p^e) = 1 if p == 1 or 3 (mod 8), a(p^e) = (-1)^e if p == 5 or 7 (mod 8).
G.f.: x * (1 - x^4)^2/((1 - x^2)*(1 - x^8)) = (x + x^3)/(1 + x^4).
a(-n) = -a(n) = a(n+4).
a(n+2) = A091337(n).
a(2*n) = 0, a(2*n+1) = A057077(n).
G.f.: x/(1 - x^2/(1 + 2*x^2/(1 - x^2))). - Michael Somos, Jan 03 2013
a(n) = ((-2)/n), where (k/n) is the Kronecker symbol. Period 8. See the Eric Weisstein link. - Wolfdieter Lang, May 29 2013
a(n) = A257170(n) unless n = 0.
From Jianing Song, Nov 14 2018: (Start)
a(n) = sqrt(2)*sin(Pi*n/2)*cos(Pi*n/4).
E.g.f.: sqrt(2)*sin(x/sqrt(2))*cosh(x/sqrt(2)).
Moebius transform of A002325.
a(n) = A091337(n)*A101455(n).
a(n) = ((-2)^(2*i+1)/n) for all integers i >= 0, where (k/n) is the Kronecker symbol. (End)
a(n) = A014017(n-1)+A014017(n-3). - R. J. Mathar, Dec 17 2024

A050471 a(n) = Sum_{d|n, n/d=1 mod 4} d^3 - Sum_{d|n, n/d=3 mod 4} d^3.

Original entry on oeis.org

1, 8, 26, 64, 126, 208, 342, 512, 703, 1008, 1330, 1664, 2198, 2736, 3276, 4096, 4914, 5624, 6858, 8064, 8892, 10640, 12166, 13312, 15751, 17584, 18980, 21888, 24390, 26208, 29790, 32768, 34580, 39312, 43092, 44992, 50654, 54864, 57148
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Comments

Multiplicative because it is the Dirichlet convolution of A000578 = n^3 and A101455 = [1 0 -1 0 1 0 -1 ...], which are both multiplicative. - Christian G. Bower, May 17 2005

Crossrefs

Glaisher's E'_i (i=0..12): A002654, A050469, A050470, this sequence, A050468, A321829, A321830, A321831, A321832, A321833, A321834, A321835, A321836.

Programs

  • Mathematica
    max = 40; s = Sum[n^3*x^(n-1)/(1+x^(2*n)), {n, 1, max}] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Dec 02 2015, after Vladeta Jovovic *)
    s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *)
    f[p_, e_] := (p^(3*e+3) - s[p]^(e+1))/(p^3 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d^3*(((n/d) % 4)==1)) - sumdiv(n, d, d^3*(((n/d) % 4)==3)); \\ Michel Marcus, Feb 16 2015

Formula

G.f.: Sum_{n>=1} n^3*x^n/(1+x^(2*n)). - Vladeta Jovovic, Oct 16 2002
From Amiram Eldar, Nov 04 2023: (Start)
Multiplicative with a(p^e) = (p^(3*e+3) - A101455(p)^(e+1))/(p^3 - A101455(p)).
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = A175572. (End)
a(n) = Sum_{d|n} (n/d)^3*sin(d*Pi/2). - Ridouane Oudra, Sep 26 2024

Extensions

Offset changed from 0 to 1 by R. J. Mathar, Jul 15 2010

A084099 Expansion of (1+x)^2/(1+x^2).

Original entry on oeis.org

1, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0
Offset: 0

Views

Author

Paul Barry, May 15 2003

Keywords

Comments

Inverse binomial transform of A077860. Partial sums of A084100.
Transform of sqrt(1+2x)/sqrt(1-2x) (A063886) under the Chebyshev transformation A(x)->((1-x^2)/(1+x^2))*A(x/(1+x^2)). - Paul Barry, Oct 12 2004
Euler transform of length 4 sequence [2, -3, 0, 1]. - Michael Somos, Aug 04 2009

Examples

			G.f. = 1 + 2*x - 2*x^3 + 2*x^5 - 2*x^7 + 2*x^9 - 2*x^11 + 2*x^13 - 2*x^15 + ...
		

Crossrefs

Programs

  • Magma
    [1] cat [Integers()!((1-(-1)^n)*(-1)^(n*(n-1)/2)): n in [1..100]]; // Wesley Ivan Hurt, Oct 27 2015
    
  • Maple
    A084099:=n->(1-(-1)^n)*(-1)^((2*n-1+(-1)^n)/4): 1,seq(A084099(n), n=1..100); # Wesley Ivan Hurt, Oct 27 2015
  • Mathematica
    CoefficientList[Series[(1+x)^2/(1+x^2),{x,0,110}],x] (* or *) Join[ {1}, PadRight[{},120,{2,0,-2,0}]] (* Harvey P. Dale, Nov 23 2011 *)
  • PARI
    {a(n) = if( n<1, n==0, 2 * if( n%2, (-1)^(n\2)) )}; /* Michael Somos, Aug 04 2009 */
    
  • PARI
    a(n) = if(n==0, 1, I*((-I)^n-I^n)) \\ Colin Barker, Oct 27 2015
    
  • PARI
    Vec((1+x)^2/(1+x^2) + O(x^100)) \\ Colin Barker, Oct 27 2015

Formula

G.f.: (1+x)^2/(1+x^2).
a(n) = 2 * A101455(n) for n>0. - N. J. A. Sloane, Jun 01 2010
a(n+2) = (-1)^A180969(1,n)*((-1)^n - 1). - Adriano Caroli, Nov 18 2010
G.f.: 4*x + 2/(1+x)/G(0), where G(k) = 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 19 2013
From Wesley Ivan Hurt, Oct 27 2015: (Start)
a(n) = (1-sign(n)*(-1)^n)*(-1)^floor(n/2).
a(n) = 2*(n mod 2)*(-1)^floor(n/2) for n>0, a(0)=1.
a(n) = (1-(-1)^n)*(-1)^(n*(n-1)/2) for n>0, a(0)=1. (End)
From Colin Barker, Oct 27 2015: (Start)
a(n) = -a(n-2).
a(n) = i*((-i)^n-i^n) for n>0, where i = sqrt(-1).
(End)

A175571 Decimal expansion of the Dirichlet beta function of 5.

Original entry on oeis.org

9, 9, 6, 1, 5, 7, 8, 2, 8, 0, 7, 7, 0, 8, 8, 0, 6, 4, 0, 0, 6, 3, 1, 9, 3, 6, 8, 6, 3, 0, 9, 7, 5, 2, 8, 1, 5, 1, 1, 3, 9, 5, 5, 2, 9, 3, 8, 8, 2, 6, 4, 9, 4, 3, 2, 0, 7, 9, 8, 3, 2, 1, 5, 1, 2, 4, 4, 6, 2, 8, 6, 5, 0, 1, 8, 2, 7, 4, 8, 1, 9, 2, 8, 9, 6, 5, 9, 8, 3, 2, 2, 7, 0, 5, 2, 4, 4, 7, 5, 5, 9, 9, 0, 8, 0
Offset: 0

Views

Author

R. J. Mathar, Jul 15 2010

Keywords

Comments

The value of the Dirichlet L-series L(m=4,r=2,s=4), see arXiv:1008.2547.

Examples

			0.99615782807708806400631936...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. 308.

Crossrefs

Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A153071 (beta(3)), A175572 (beta(4)), A175570 (beta(6)), A258814 (beta(7)), A258815 (beta(8)), A258816 (beta(9)).
Cf. A101455.

Programs

  • Maple
    DirichletBeta := proc(s) 4^(-s)*(Zeta(0,s,1/4)-Zeta(0,s,3/4)) ; end proc: x := DirichletBeta(5) ; x := evalf(x) ;
  • Mathematica
    RealDigits[ DirichletBeta[5], 10, 105] // First (* Jean-François Alcover, Feb 20 2013, updated Mar 14 2018 *)
  • PARI
    5*Pi^5/1536 \\ Charles R Greathouse IV, Jan 31 2018
    
  • PARI
    beta(x)=(zetahurwitz(x,1/4)-zetahurwitz(x,3/4))/4^x
    beta(5) \\ Charles R Greathouse IV, Jan 31 2018

Formula

Equals 5*Pi^5/1536 = Sum_{n>=1} A101455(n)/n^5, where Pi^5 = A092731. [corrected by R. J. Mathar, Feb 01 2018]
Equals Sum_{n>=0} (-1)^n/(2*n+1)^5. - Jean-François Alcover, Mar 29 2013
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^5)^(-1). - Amiram Eldar, Nov 06 2023

A175572 Decimal expansion of the Dirichlet beta function of 4.

Original entry on oeis.org

9, 8, 8, 9, 4, 4, 5, 5, 1, 7, 4, 1, 1, 0, 5, 3, 3, 6, 1, 0, 8, 4, 2, 2, 6, 3, 3, 2, 2, 8, 3, 7, 7, 8, 2, 1, 3, 1, 5, 8, 6, 0, 8, 8, 7, 0, 6, 2, 7, 3, 3, 9, 1, 0, 7, 8, 1, 9, 9, 2, 4, 0, 1, 6, 3, 9, 0, 1, 5, 1, 9, 4, 6, 9, 8, 0, 1, 8, 1, 9, 6, 4, 1, 1, 9, 1, 0, 4, 6, 8, 9, 9, 9, 7, 9, 9, 9, 3, 3, 7, 8, 5, 6, 2, 1
Offset: 0

Views

Author

R. J. Mathar, Jul 15 2010

Keywords

Comments

This is the value of the Dirichlet L-series for A101455 at s=4, see arXiv:1008.2547, L(m=4,r=2,s=4).

Examples

			0.988944551741105336108422633...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. (308).

Crossrefs

Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A153071 (beta(3)), A175571 (beta(5)), A175570 (beta(6)), A258814 (beta(7)), A258815 (beta(8)), A258816 (beta(9)).
Cf. A101455.

Programs

  • Maple
    DirichletBeta := proc(s) 4^(-s)*(Zeta(0,s,1/4)-Zeta(0,s,3/4)) ; end proc: x := DirichletBeta(4) ; x := evalf(x) ;
  • Mathematica
    RealDigits[ DirichletBeta[4], 10, 105] // First (* Jean-François Alcover, Feb 11 2013, updated Mar 14 2018 *)
  • PARI
    beta(x)=(zetahurwitz(x,1/4)-zetahurwitz(x,3/4))/4^x
    beta(4) \\ Charles R Greathouse IV, Jan 31 2018

Formula

Equals Sum_{n>=1} A101455(n)/n^4. [corrected by R. J. Mathar, Feb 01 2018]
Equals (PolyGamma(3, 1/4) - PolyGamma(3, 3/4))/1536. - Jean-François Alcover, Jun 11 2015
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^4)^(-1). - Amiram Eldar, Nov 06 2023

A175570 Decimal expansion of the Dirichlet beta function of 6.

Original entry on oeis.org

9, 9, 8, 6, 8, 5, 2, 2, 2, 2, 1, 8, 4, 3, 8, 1, 3, 5, 4, 4, 1, 6, 0, 0, 7, 8, 7, 8, 6, 0, 2, 0, 6, 5, 4, 9, 6, 7, 8, 3, 6, 4, 5, 4, 6, 1, 2, 6, 5, 1, 4, 4, 1, 1, 4, 0, 4, 1, 2, 6, 4, 5, 1, 2, 2, 9, 7, 1, 2, 7, 5, 2, 5, 5, 9, 0, 3, 1, 0, 8, 9, 4, 5, 5, 4, 8, 2, 1, 8, 4, 5, 3, 8, 6, 2, 9, 7, 9, 7, 8, 4, 0, 7, 8, 2
Offset: 0

Views

Author

R. J. Mathar, Jul 15 2010

Keywords

Examples

			0.998685222218438135441600...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. 308.

Crossrefs

Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A153071 (beta(3)), A175572 (beta(4)), A175571 (beta(5)), A258814 (beta(7)), A258815 (beta(8)), A258816 (beta(9)).
Cf. A101455.

Programs

  • Maple
    DirichletBeta := proc(s) 4^(-s)*(Zeta(0,s,1/4)-Zeta(0,s,3/4)) ; end proc: x := DirichletBeta(6) ; x := evalf(x) ;
  • Mathematica
    RealDigits[ DirichletBeta[6], 10, 105] // First (* Jean-François Alcover, Feb 11 2013, updated Mar 14 2018 *)
  • PARI
    beta(x)=(zetahurwitz(x,1/4)-zetahurwitz(x,3/4))/4^x
    beta(6) \\ Charles R Greathouse IV, Jan 31 2018
    
  • PARI
    sumpos(n=1,(12288*n^5 - 30720*n^4 + 33280*n^3 - 19200*n^2 + 5808*n - 728)/(16777216*n^12 - 100663296*n^11 + 270532608*n^10 - 429916160*n^9 + 449249280*n^8 - 324796416*n^7 + 166445056*n^6 - 60899328*n^5 + 15793920*n^4 - 2833920*n^3 + 334368*n^2 - 23328*n + 729),1) \\ Charles R Greathouse IV, Feb 01 2018

Formula

Equals Sum_{n>=1} A101455(n)/n^6. [see arxiv:1008.2547, L(m=4,r=2,s=6)] [corrected by R. J. Mathar, Feb 01 2018]
Equals (PolyGamma(5, 1/4) - PolyGamma(5, 3/4))/491520. - Jean-François Alcover, Jun 11 2015
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^6)^(-1). - Amiram Eldar, Nov 06 2023

A321829 a(n) = Sum_{d|n, n/d==1 mod 4} d^5 - Sum_{d|n, n/d==3 mod 4} d^5.

Original entry on oeis.org

1, 32, 242, 1024, 3126, 7744, 16806, 32768, 58807, 100032, 161050, 247808, 371294, 537792, 756492, 1048576, 1419858, 1881824, 2476098, 3201024, 4067052, 5153600, 6436342, 7929856, 9768751, 11881408, 14290100, 17209344, 20511150, 24207744, 28629150, 33554432, 38974100, 45435456, 52535556
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Glaisher's E'_i (i=0..12): A002654, A050469, A050470, A050471, A050468, this sequence, A321830, A321831, A321832, A321833, A321834, A321835, A321836.

Programs

  • Mathematica
    s[n_,r_] := DivisorSum[n, # ^5 &, Mod[n/#,4]==r &]; a[n_] := s[n,1] - s[n,3]; Array[a, 30] (* Amiram Eldar, Nov 26 2018 *)
    s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *)
    f[p_, e_] := (p^(5*e+5) - s[p]^(e+1))/(p^5 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
  • PARI
    apply( A321829(n)=factorback(apply(f->f[1]^(5*f[2]+5)\/(f[1]^5+f[1]%4-2),Col(factor(n)))), [1..40]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^5*x^k/(1 + x^(2*k)). - Ilya Gutkovskiy, Nov 26 2018
Multiplicative with a(p^e) = round(p^(5e+5)/(p^5 + p%4 - 2)), where p%4 is the remainder of p modulo 4. (Following R. Israel in A321833.) - M. F. Hasler, Nov 26 2018
Sum_{k=1..n} a(k) ~ c * n^6 / 6, where c = A175570. - Amiram Eldar, Nov 04 2023
a(n) = Sum_{d|n} (n/d)^5*sin(d*Pi/2). - Ridouane Oudra, Sep 27 2024

A321830 a(n) = Sum_{d|n, n/d==1 mod 4} d^6 - Sum_{d|n, n/d==3 mod 4} d^6.

Original entry on oeis.org

1, 64, 728, 4096, 15626, 46592, 117648, 262144, 530713, 1000064, 1771560, 2981888, 4826810, 7529472, 11375728, 16777216, 24137570, 33965632, 47045880, 64004096, 85647744, 113379840, 148035888, 190840832, 244156251, 308915840, 386889776
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Glaisher's E'_i (i=0..12): A002654, A050469, A050470, A050471, A050468, A321829, this sequence, A321831, A321832, A321833, A321834, A321835, A321836.

Programs

  • Mathematica
    s[n_,r_] := DivisorSum[n, #^6 &, Mod[n/#,4]==r &]; a[n_] := s[n,1] - s[n,3]; Array[a, 30] (* Amiram Eldar, Nov 26 2018 *)
    s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *)
    f[p_, e_] := (p^(6*e+6) - s[p]^(e+1))/(p^6 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
  • PARI
    apply( A321830(n)=factorback(apply(f->f[1]^(6*f[2]+6)\/(f[1]^6+f[1]%4-2),Col(factor(n)))), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^6*x^k/(1 + x^(2*k)). - Ilya Gutkovskiy, Nov 26 2018
Multiplicative with a(p^e) = round(p^(6e+6)/(p^6 + p%4 - 2)), where p%4 is the remainder of p modulo 4. (Following R. Israel in A321833.) - M. F. Hasler, Nov 26 2018
Sum_{k=1..n} a(k) ~ c * n^7 / 7, where c = 61*Pi^7/184320 (A258814). - Amiram Eldar, Nov 04 2023
a(n) = Sum_{d|n} (n/d)^6*sin(d*Pi/2). - Ridouane Oudra, Sep 27 2024

A321831 a(n) = Sum_{d|n, n/d==1 mod 4} d^7 - Sum_{d|n, n/d==3 mod 4} d^7.

Original entry on oeis.org

1, 128, 2186, 16384, 78126, 279808, 823542, 2097152, 4780783, 10000128, 19487170, 35815424, 62748518, 105413376, 170783436, 268435456, 410338674, 611940224, 893871738, 1280016384, 1800262812, 2494357760, 3404825446, 4584374272, 6103593751
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Glaisher's E'_i (i=0..12): A002654, A050469, A050470, A050471, A050468, A321829, A321830, this sequence, A321832, A321833, A321834, A321835, A321836.

Programs

  • Mathematica
    s[n_,r_] := DivisorSum[n, #^7 &, Mod[n/#,4]==r &]; a[n_] := s[n,1] - s[n,3]; Array[a, 30] (* Amiram Eldar, Nov 26 2018 *)
    s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *)
    f[p_, e_] := (p^(7*e+7) - s[p]^(e+1))/(p^7 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
  • PARI
    apply( A321831(n)=factorback(apply(f->f[1]^(7*f[2]+7)\/(f[1]^7+f[1]%4-2),Col(factor(n)))), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^7*x^k/(1 + x^(2*k)). - Ilya Gutkovskiy, Nov 26 2018
Multiplicative with a(p^e) = round(p^(7e+7)/(p^7 + p%4 - 2)), where p%4 is the remainder of p modulo 4. (Following R. Israel in A321833.) - M. F. Hasler, Nov 26 2018
Sum_{k=1..n} a(k) ~ c * n^8 / 8, where c = A258815. - Amiram Eldar, Nov 04 2023
a(n) = Sum_{d|n} (n/d)^7*sin(d*Pi/2). - Ridouane Oudra, Sep 27 2024
Previous Showing 11-20 of 62 results. Next