cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A101455 a(n) = 0 for even n, a(n) = (-1)^((n-1)/2) for odd n. Periodic sequence 1,0,-1,0,...

Original entry on oeis.org

0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0
Offset: 0

Views

Author

Gerald McGarvey, Jan 20 2005

Keywords

Comments

Called X(n) (i.e., Chi(n)) in Hardy and Wright (p. 241), who show that X(n*m) = X(n)*X(m) for all n and m (i.e., X(n) is completely multiplicative) since (n*m - 1)/2 - (n - 1)/2 - (m - 1)/2 = (n - 1)*(m - 1)/2 == 0 (mod 2) when n and m are odd.
Same as A056594 but with offset 1.
From R. J. Mathar, Jul 15 2010: (Start)
The sequence is the non-principal Dirichlet character mod 4. (The principal character is A000035.)
Associated Dirichlet L-functions are for example L(1,chi) = Sum_{n>=1} a(n)/n = A003881, or L(2,chi) = Sum_{n>=1} a(n)/n^2 = A006752, or L(3,chi) = Sum_{n>=1} a(n)/n^3 = A153071. (End)
a(n) is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = 0, y = -1, z is arbitrary. - Michael Somos, Nov 27 2019

Examples

			G.f. = x - x^3 + x^5 - x^7 + x^9 - x^11 + x^13 - x^15 + x^17 - x^19 + x^21 + ...
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986, page 139, k=4, Chi_2(n).
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 5th ed., Oxford Univ. Press, 1979, p. 241.

Crossrefs

Kronecker symbols {(d/n)} where d is a fundamental discriminant with |d| <= 24: A109017 (d=-24), A011586 (d=-23), A289741 (d=-20), A011585 (d=-19), A316569 (d=-15), A011582 (d=-11), A188510 (d=-8), A175629 (d=-7), this sequence (d=-4), A102283 (d=-3), A080891 (d=5), A091337 (d=8), A110161 (d=12), A011583 (d=13), A011584 (d=17), A322829 (d=21), A322796 (d=24).

Programs

  • GAP
    a := [1, 0];; for n in [3..10^2] do a[n] := a[n-2]; od; a; # Muniru A Asiru, Feb 02 2018
    
  • Magma
    m:=75; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x/(1+x^2))); // G. C. Greubel, Aug 23 2018
    
  • Maple
    a := n -> `if`(n mod 2=0, 0, (-1)^((n-1)/2)):
    seq(a(n), n=1..10^3); # Muniru A Asiru, Feb 02 2018
  • Mathematica
    a[ n_] := {1, 0, -1, 0}[[ Mod[ n, 4, 1]]]; (* Michael Somos, Jan 13 2014 *)
    LinearRecurrence[{0, -1}, {1, 0}, 75] (* G. C. Greubel, Aug 23 2018 *)
  • PARI
    {a(n) = if( n%2, (-1)^(n\2))}; /* Michael Somos, Sep 02 2005 */
    
  • PARI
    {a(n) = kronecker( -4, n)}; /* Michael Somos, Mar 30 2012 */
    
  • Python
    def A101455(n): return (0,1,0,-1)[n&3] # Chai Wah Wu, Jun 21 2024

Formula

Multiplicative with a(2^e) = 0, a(p^e) = (-1)^((p^e-1)/2) otherwise. - Mitch Harris May 17 2005
Euler transform of length 4 sequence [0, -1, 0, 1]. - Michael Somos, Sep 02 2005
G.f.: (x - x^3)/(1 - x^4) = x/(1 + x^2). - Michael Somos, Sep 02 2005
G.f. A(x) satisfies: 0 = f(A(x), A(x^2)) where f(u, v) = v - u^2 * (1 + 2*v). - Michael Somos, Aug 04 2011
a(n + 4) = a(n), a(n + 2) = a(-n) = -a(n), a(2*n) = 0, a(2*n + 1) = (-1)^n for all n in Z. - Michael Somos, Aug 04 2011
a(n + 1) = A056594(n). - Michael Somos, Jan 13 2014
REVERT transform is A126120. STIRLING transform of A009454. BINOMIAL transform is A146559. BINOMIAL transform of A009116. BIN1 transform is A108520. MOBIUS transform of A002654. EULER transform is A111335. - Michael Somos, Mar 30 2012
Completely multiplicative with a(p) = 2 - (p mod 4). - Werner Schulte, Feb 01 2018
a(n) = (-(n mod 2))^binomial(n, 2). - Peter Luschny, Sep 08 2018
a(n) = sin(n*Pi/2) = Im(i^n) where i is the imaginary unit. - Jianing Song, Sep 09 2018
From Jianing Song, Nov 14 2018: (Start)
a(n) = ((-4)/n) (or more generally, ((-4^i)/n) for i > 0), where (k/n) is the Kronecker symbol.
E.g.f.: sin(x).
Dirichlet g.f. is the Dirichlet beta function.
a(n) = A091337(n)*A188510(n). (End)

Extensions

a(0) prepended by Jianing Song, Nov 14 2024

A093954 Decimal expansion of Pi/(2*sqrt(2)).

Original entry on oeis.org

1, 1, 1, 0, 7, 2, 0, 7, 3, 4, 5, 3, 9, 5, 9, 1, 5, 6, 1, 7, 5, 3, 9, 7, 0, 2, 4, 7, 5, 1, 5, 1, 7, 3, 4, 2, 4, 6, 5, 3, 6, 5, 5, 4, 2, 2, 3, 4, 3, 9, 2, 2, 5, 5, 5, 7, 7, 1, 3, 4, 8, 9, 0, 1, 7, 3, 9, 1, 0, 8, 6, 9, 8, 2, 7, 4, 8, 6, 8, 4, 7, 7, 6, 4, 3, 8, 3, 1, 7, 3, 3, 6, 9, 1, 1, 9, 1, 3, 0, 9, 3, 4
Offset: 1

Views

Author

Eric W. Weisstein, Apr 19 2004

Keywords

Comments

The value is the length Pi*sqrt(2)/4 of the diagonal in the square with side length Pi/4 = Sum_{n>=0} (-1)^n/(2n+1) = A003881. The area of the circumcircle of this square is Pi*(Pi*sqrt(2)/8)^2 = Pi^3/32 = A153071. - Eric Desbiaux, Jan 18 2009
This is the value of the Dirichlet L-function of modulus m=8 at argument s=1 for the non-principal character (1,0,1,0,-1,0,-1,0). See arXiv:1008.2547. - R. J. Mathar, Mar 22 2011
Archimedes's-like scheme: set p(0) = sqrt(2), q(0) = 1; p(n+1) = 2*p(n)*q(n)/(p(n)+q(n)) (harmonic mean, i.e., 1/p(n+1) = (1/p(n) + 1/q(n))/2), q(n+1) = sqrt(p(n+1)*q(n)) (geometric mean, i.e., log(q(n+1)) = (log(p(n+1)) + log(q(n)))/2), for n >= 0. The error of p(n) and q(n) decreases by a factor of approximately 4 each iteration, i.e., approximately 2 bits are gained by each iteration. Set r(n) = (2*q(n) + p(n))/3, the error decreases by a factor of approximately 16 for each iteration, i.e., approximately 4 bits are gained by each iteration. For a similar scheme see also A244644. - A.H.M. Smeets, Jul 12 2018
The area of a circle circumscribing a unit-area regular octagon. - Amiram Eldar, Nov 05 2020

Examples

			1.11072073453959156175397...
From _Peter Bala_, Mar 03 2015: (Start)
Asymptotic expansion at n = 5000.
The truncated series Sum_{k = 0..5000 - 1} (-1)^floor(k/2)/(2*k + 1) = 1.110(6)207345(42)591561(18)3970(5238)1.... The bracketed digits show where this decimal expansion differs from that of Pi/(2*sqrt(2)). The numbers 1, -3, 57, -2763 must be added to the bracketed numbers to give the correct decimal expansion to 30 digits: Pi/(2*sqrt(2)) = 1.110(7)207345(39)591561(75)3970 (2475)1.... (End)
From _Peter Bala_, Nov 24 2016: (Start)
Case m = 1, n = 1:
Pi/(2*sqrt(2)) = 4*Sum_{k >= 0} (-1)^(1 + floor(k/2))/((2*k - 1)*(2*k + 1)*(2*k + 3)).
We appear to have the following asymptotic expansion for the tails of this series: for N divisible by 4, Sum_{k >= N/2} (-1)^floor(k/2)/((2*k - 1)*(2*k + 1)*(2*k + 3)) ~ 1/N^3 - 14/N^5 + 691/N^7 - 62684/N^9 - ..., where the coefficient sequence [1, 0, -14, 0, 691, 0, -62684, ...] appears to come from the e.g.f. (1/2!)*cosh(x)/cosh(2*x)*sinh(x)^2 = x^2/2! - 14*x^4/4! + 691*x^6/6! - 62684*x^8/8! + .... Cf. A019670.
For example, take N = 10^5. The truncated series Sum_{k = 0..N/2 -1} (-1)^(1+floor(k/2))/((2*k - 1)*(2*k + 1)*(2*k + 3)) = 0.27768018363489(8)89043849(11)61878(80026)6163(351171)58.... The bracketed digits show where this decimal expansion differs from that of (1/4)*Pi/(2*sqrt(2)). The numbers -1, 14, -691, 62684 must be added to the bracketed numbers to give the correct decimal expansion: (1/4)*Pi/(2*sqrt(2)) = 0.27768018363489(7) 89043849(25)61878(79335)6163(413855)58... (End)
		

References

  • J. M. Arnaudiès, P. Delezoide et H. Fraysse, Exercices résolus d'Analyse du cours de mathématiques - 2, Dunod, 1993, Exercice 5, p. 240.
  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press, 2006, p. 149.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4.1, p. 20.
  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. 76, page 16.
  • Joel L. Schiff, The Laplace Transform: Theory and Applications, Springer-Verlag New York, Inc. (1999). See p. 149.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 53.

Crossrefs

Programs

  • Maple
    simplify( sum((cos((1/2)*k*Pi)+sin((1/2)*k*Pi))/(2*k+1), k = 0 .. infinity) );  # Peter Bala, Mar 09 2015
  • Mathematica
    RealDigits[Pi/Sqrt@8, 10, 111][[1]] (* Michael De Vlieger, Sep 23 2016 and slightly modified by Robert G. Wilson v, Jul 23 2018 *)
  • PARI
    default(realprecision, 20080); x=Pi*sqrt(2)/4; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b093954.txt", n, " ", d)); \\ Harry J. Smith, Jun 17 2009

Formula

Equals 1/A112628.
Equals Integral_{x=0..oo} 1/(x^4+1) dx. - Jean-François Alcover, Apr 29 2013
From Peter Bala, Feb 05 2015: (Start)
Pi/(2*sqrt(2)) = Sum_{k >= 0} binomial(2*k,k)*1/(2*k + 1)*(1/8)^k.
The integer sequences A(n) := 2^n*(2*n + 1)! and B(n) := A(n)*( Sum {k = 0..n} binomial(2*k,k)*1/(2*k + 1)*(1/8)^k ) both satisfy the second order recurrence equation u(n) = (12*n^2 + 1)*u(n-1) - 4*(n - 1)*(2*n - 1)^3*u(n-2). From this observation we can obtain the continued fraction expansion Pi/(2*sqrt(2)) = 1 + 1/(12 - 4*3^3/(49 - 4*2*5^3/(109 - 4*3*7^3/(193 - ... - 4*(n - 1)*(2*n - 1)^3/((12*n^2 + 1) - ... ))))). Cf. A002388 and A019670. (End)
From Peter Bala, Mar 03 2015: (Start)
Pi/(2*sqrt(2)) = Sum_{k >= 0} (-1)^floor(k/2)/(2*k + 1) = limit (n -> infinity) Sum_{k = -n .. n - 1} (-1)^k/(4*k + 1). See Wells.
We conjecture the asymptotic expansion Pi/(2*sqrt(2)) - Sum {k = 0..n - 1} (-1)^floor(k/2)/(2*k + 1) ~ 1/(2*n) - 3/(2*n)^3 + 57/(2*n)^5 - 2763/(2*n)^7 + ..., where n is a multiple of 4 and the sequence of unsigned coefficients [1, 3, 57, 2763, ...] is A000281. An example with n = 5000 is given below. (End)
From Peter Bala, Sep 21 2016: (Start)
c = 2 * Sum_{k >= 0} (-1)^k * (4*k + 2)/((4*k + 1)*(4*k + 3)) = A181048 + A181049. The asymptotic expansion conjectured above follows from the asymptotic expansions given in A181048 and A181049.
c = 1/2 * Integral_{x = 0..Pi/2} sqrt(tan(x)) dx. (End)
From Peter Bala, Nov 24 2016: (Start)
Let m be an odd integer and n a nonnegative integer. Then Pi/(2*sqrt(2)) = 2^n*m^(2*n)*(2*n)!*Sum_{k >= 0} (-1)^(n+floor(k/2)) * 1/Product_{j = -n..n} (2*k + 1 + 2*m*j). Cf. A003881.
In the particular case m = 1 the result has the equivalent form: for n a nonnegative integer, Pi/(2*sqrt(2)) = 2^n*(2*n)!*Sum_{k >= 0} (-1)^(n+k)*(8*k + 4)* 1/Product_{j = -n..n+1} (4*k + 2*j + 1). The case m = 1, n = 1 is considered in the Example section below.
Let m be an odd integer and n a nonnegative integer. Then Pi/(2*sqrt(2)) = 4^n*m^(2*n)*(2*n)!*Sum_{k >= 0} (-1)^(n+floor(k/2)) * 1/Product_{j = -n..n} (2*k + 1 + 4*m*j). (End)
Equals Integral_{x = 0..oo} cosh(x)/cosh(2*x) dx. - Peter Bala, Nov 01 2019
Equals Sum_{k>=1} A188510(k)/k = Sum_{k>=1} Kronecker(-8,k)/k = 1 + 1/3 - 1/5 - 1/7 + 1/9 + 1/11 - 1/13 - 1/15 + ... - Jianing Song, Nov 16 2019
From Amiram Eldar, Jul 16 2020: (Start)
Equals Product_{k>=1} (1 - (-1)^k/(2*k+1)).
Equals Integral_{x=0..oo} dx/(x^2 + 2).
Equals Integral_{x=0..Pi/2} dx/(sin(x)^2 + 1). (End)
Equals Integral_{x=0..oo} x^2/(x^4 + 1) dx (Arnaudiès). - Bernard Schott, May 19 2022
Equals Integral_{x = 0..1} 1/(2*x^2 + (1 - x)^2) dx. - Peter Bala, Jul 22 2022
Equals Integral_{x = 0..1} 1/(1 - x^4)^(1/4) dx. - Terry D. Grant, Mar 17 2023
Equals 1/Product_{p prime} (1 - Kronecker(-8,p)/p), where Kronecker(-8,p) = 0 if p = 2, 1 if p == 1 or 3 (mod 8) or -1 if p == 5 or 7 (mod 8). - Amiram Eldar, Dec 17 2023
Equals A068465*A068467. - R. J. Mathar, Jun 27 2024
From Stefano Spezia, Jun 05 2025: (Start)
Equals Sum_{k>=1} (-1)^(k+1)(1/(4*k - 3) + 1/(4*k - 1)).
Equals Product_{k=0..oo} (1 + (-1)^k/(2*k + 3)).
Equals Integral_{x=0..oo} 1/(2*x^2 + 1).
Equals Integral_{x=0..1} 1/((1 + x^2)*sqrt(1 - x^2)). (End)

A091337 a(n) = (2/n), where (k/n) is the Kronecker symbol.

Original entry on oeis.org

0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1
Offset: 0

Views

Author

Eric W. Weisstein, Dec 30 2003

Keywords

Comments

Sinh(1) in 'reflected factorial' base is 1.01010101010101010101010101010101010101010101... see A073097 for cosh(1). - Robert G. Wilson v, May 04 2005
A non-principal character for the Dirichlet L-series modulo 8, see arXiv:1008.2547 and L-values Sum_{n >= 1} a(n)/n^s in eq (318) by Jolley. - R. J. Mathar, Oct 06 2011 [The other two non-principal characters are A101455 = {(-4/n)} and A188510 = {(-2/n)}. - Jianing Song, Nov 14 2024]
Period 8: repeat [0, 1, 0, -1, 0, -1, 0, 1]. - Wesley Ivan Hurt, Sep 07 2015 [Adapted by Jianing Song, Nov 14 2024 to include a(0) = 0.]
a(n) = (2^(2i+1)/n), where (k/n) is the Kronecker symbol and i >= 0. - A.H.M. Smeets, Jan 23 2018

Examples

			G.f. = x - x^3 - x^5 + x^7 + x^9 - x^11 - x^13 + x^15 + x^17 - x^19 - x^21 + ...
		

References

  • L. B. W. Jolley, Summation of series, Dover (1961).

Crossrefs

Kronecker symbols {(d/n)} where d is a fundamental discriminant with |d| <= 24: A109017 (d=-24), A011586 (d=-23), A289741 (d=-20), A011585 (d=-19), A316569 (d=-15), A011582 (d=-11), A188510 (d=-8), A175629 (d=-7), A101455 (d=-4), A102283 (d=-3), A080891 (d=5), this sequence (d=8), A110161 (d=12), A011583 (d=13), A011584 (d=17), A322829 (d=21), A322796 (d=24).

Programs

  • Magma
    [(n mod 2) * (-1)^((n+1) div 4)  : n in [1..100]]; // Vincenzo Librandi, Oct 31 2014
  • Maple
    A091337:= n -> [0, 1, 0, -1, 0, -1, 0, 1][(n mod 8)+1]: seq(A091337(n), n=1..100); # Wesley Ivan Hurt, Sep 07 2015
  • Mathematica
    KroneckerSymbol[Range[100], 2] (* Alonso del Arte, Oct 30 2014 *)
  • PARI
    {a(n) = (n%2) * (-1)^((n+1)\4)}; /* Michael Somos, Sep 10 2005 */
    
  • PARI
    {a(n) = kronecker( 2, n)}; /* Michael Somos, Sep 10 2005 */
    
  • PARI
    {a(n) = [0, 1, 0, -1, 0, -1, 0, 1][n%8 + 1]}; /* Michael Somos, Jul 17 2009 */
    

Formula

Euler transform of length 8 sequence [0, -1, 0, -1, 0, 0, 0, 1]. - Michael Somos, Jul 17 2009
a(n) is multiplicative with a(2^e) = 0^e, a(p^e) = 1 if p == 1, 7 (mod 8), a(p^e) = (-1)^e if p == 3, 5 (mod 8). - Michael Somos, Jul 17 2009
G.f.: x*(1 - x^2)/(1 + x^4). a(n) = -a(n + 4) = a(-n) for all n in Z. a(2*n) = 0. a(2*n + 1) = A087960(n). - Michael Somos, Apr 10 2011
Transform of Pell numbers A000129 by the Riordan array A102587. - Paul Barry, Jul 14 2005
a(n) = (2/n) = (n/2), Charles R Greathouse IV explained. - Alonso del Arte, Oct 31 2014
a(n) = (1 - (-1)^n)*(-1)^(n/4 - 1/8 - (-1)^n/8 + (-1)^((2*n + 1 - (-1)^n)/4)/4)/2. - Wesley Ivan Hurt, Sep 07 2015
From Jianing Song, Nov 14 2018: (Start)
a(n) = sqrt(2)*sin(Pi*n/2)*sin(Pi*n/4).
E.g.f.: sqrt(2)*cos(x/sqrt(2))*sinh(x/sqrt(2)).
Moebius transform of A035185.
a(n) = A101455(n)*A188510(n). (End)
a(n) = Sum_{i=1..n} (-1)^(i + floor((i-3)/4)). - Wesley Ivan Hurt, Apr 27 2020
Sum_{n>=1} a(n)/n = A196525. Sum_{n>=1} a(n)/n^2 = A328895. Sum_{n>=1} a(n)/n^3 = A329715. Sum_{n>=1} a(n)/n^4 = A346728. - R. J. Mathar, Dec 17 2024

Extensions

a(0) prepended by Jianing Song, Nov 14 2024

A320857 a(n) = Pi(8,5)(n) + Pi(8,7)(n) - Pi(8,1)(n) - Pi(8,3)(n) where Pi(a,b)(x) denotes the number of primes in the arithmetic progression a*k + b less than or equal to x.

Original entry on oeis.org

0, 0, -1, -1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Jianing Song, Nov 24 2018

Keywords

Comments

a(n) is the number of odd primes <= n that have -2 as a quadratic nonresidue minus the number of primes <= n that have -2 as a quadratic residue.
It seems that there are more negative terms here than in some other sequences mentioned in crossrefs; nevertheless, among the first 10000 terms, only 212 ones are negative.
In general, assuming the strong form of the Riemann Hypothesis, if 0 < a, b < k are integers, gcd(a, k) = gcd(b, k) = 1, a is a quadratic residue and b is a quadratic nonresidue mod k, then Pi(k,b)(n) > Pi(k,a)(n) occurs more often than not. This phenomenon is called "Chebyshev's bias". (See Wikipedia link and especially the links in A007350.) [Edited by Peter Munn, Nov 18 2023]
Here, although 3 is not a quadratic residue modulo 8, for most n we have Pi(8,5)(n) + Pi(8,7)(n) > Pi(8,1)(n) - Pi(8,3)(n), Pi(8,3)(n) + Pi(8,7)(n) > Pi(8,1)(n) + Pi(8,5)(n) and Pi(8,5)(n) + Pi(8,7)(n) > Pi(8,1)(n) + Pi(8,7)(n).

Examples

			Pi(8,1)(200) = 8, Pi(8,5)(200) = 13, Pi(8,3)(200) = Pi(8,7)(200) = 12, so a(200) = 13 + 12 - 8 - 12 = 5.
		

Crossrefs

Let d be a fundamental discriminant.
Sequences of the form "a(n) = -Sum_{primes p<=n} Kronecker(d,p)" with |d| <= 12: A321860 (d=-11), this sequence (d=-8), A321859 (d=-7), A066520 (d=-4), A321856 (d=-3), A321857 (d=5), A071838 (d=8), A321858 (d=12).
Sequences of the form "a(n) = -Sum_{i=1..n} Kronecker(d,prime(i))" with |d| <= 12: A321865 (d=-11), A320858 (d=-8), A321864 (d=-7), A038698 (d=-4), A112632 (d=-3), A321862 (d=5), A321861 (d=8), A321863 (d=12).

Programs

  • Mathematica
    Accumulate@ Array[-If[PrimeQ@ #, KroneckerSymbol[-2, #], 0] &, 88] (* Michael De Vlieger, Nov 25 2018 *)
  • PARI
    a(n) = -sum(i=1, n, isprime(i)*kronecker(-2, i))
    
  • Python
    from sympy import isprime; from numpy import sign
    def A320857(n): return sum(isprime(i)*(i%2)*sign(i%8-4) for i in range(1,n+1)) # Ya-Ping Lu, Jan 25 2025

Formula

a(n) = -Sum_{primes p<=n} Kronecker(-2,p) = -Sum_{primes p<=n} A188510(p).

A320858 a(n) = A320857(prime(n)).

Original entry on oeis.org

0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 1, 0, 1, 2, 1, 2, 1, 2, 1, 0, -1, 0, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 5, 4, 5, 4, 5, 4, 3, 2, 3, 4, 5, 6, 5, 4, 5, 4, 5, 4, 5, 4, 3, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 5, 4, 5, 6, 5, 6, 5, 4
Offset: 1

Views

Author

Jianing Song, Nov 24 2018

Keywords

Comments

Among the first 10000 terms there are only 100 negative ones. See the comments about "Chebyshev's bias" in A320857.

Examples

			prime(46) = 199, Pi(8,1)(199) = 8, Pi(8,5)(199) = 13, Pi(8,3)(199) = Pi(8,7)(199) = 12, so a(46) = 13 + 12 - 8 - 12 = 5.
		

Crossrefs

Cf. A188510.
Let d be a fundamental discriminant.
Sequences of the form "a(n) = -Sum_{primes p<=n} Kronecker(d,p)" with |d| <= 12: A321860 (d=-11), A320857 (d=-8), A321859 (d=-7), A066520 (d=-4), A321856 (d=-3), A321857 (d=5), A071838 (d=8), A321858 (d=12).
Sequences of the form "a(n) = -Sum_{i=1..n} Kronecker(d,prime(i))" with |d| <= 12: A321865 (d=-11), this sequence (d=-8), A321864 (d=-7), A038698 (d=-4), A112632 (d=-3), A321862 (d=5), A321861 (d=8), A321863 (d=12).

Programs

  • Mathematica
    a[n_] := -Sum[KroneckerSymbol[-2, Prime[i]], {i, 1, n}];
    Array[a, 100] (* Jean-François Alcover, Dec 28 2018, from PARI *)
  • PARI
    a(n) = -sum(i=1, n, kronecker(-2, prime(i)))

Formula

a(n) = -Sum_{i=1..n} Kronecker(prime(i),2) = -Sum_{primes p<=n} Kronecker(2,prime(i)) = -Sum_{i=1..n} A091337(prime(i)).

A251809 Decimal expansion of 3*sqrt(2)*Pi^3/128.

Original entry on oeis.org

1, 0, 2, 7, 7, 2, 2, 5, 8, 5, 9, 3, 6, 8, 5, 8, 5, 6, 7, 8, 7, 9, 2, 5, 6, 6, 1, 8, 0, 0, 2, 2, 5, 5, 7, 6, 7, 2, 1, 0, 1, 0, 0, 3, 1, 8, 5, 3, 6, 9, 9, 7, 4, 6, 5, 3, 3, 1, 0, 8, 4, 7, 5, 5, 1, 8, 5, 2, 5, 7, 7, 7, 2, 4, 6, 8, 5, 8, 4, 9, 6, 8, 0, 3, 5, 1
Offset: 1

Views

Author

Bruno Berselli, Dec 10 2014

Keywords

Comments

Equals the value of the Dirichlet L-series of the non-principal character modulo 8 (A188510) at s=3. - Jianing Song, Nov 16 2019

Examples

			1.027722585936858567879256618002255767210100318536997465331084755185...
		

References

  • L. B. W. Jolley, Summation of series, Dover Publications Inc. (New York), 1961, p. 64 (formula 340).

Crossrefs

Cf. A153071: Sum_{i >= 0} (-1)^i/(2i+1)^3.
Cf. A233091: Sum_{i >= 0} 1/(2i+1)^3.

Programs

  • Magma
    R:= RealField(); 3*Sqrt(2)*Pi(R)^3/128; // G. C. Greubel, Jul 27 2018
  • Mathematica
    RealDigits[3 Sqrt[2] Pi^3/128, 10, 90][[1]]
  • PARI
    3*sqrt(2)*Pi^3/128 \\ G. C. Greubel, Jul 27 2018
    

Formula

Equals Sum_{i >= 0} (-1)^floor(i/2)/(2i+1)^3 = +1 +1/3^3 -1/5^3 -1/7^3 +1/9^3 +1/11^3 - ...
Equals Sum_{i >= 1} A188510(i)/i^3 = Sum_{i >= 1} Kronecker(-8,i)/i^3. - Jianing Song, Nov 16 2019
Equals 1/(Product_{p prime == 1 or 3 (mod 8)} (1 - 1/p^3) * Product_{p prime == 5 or 7 (mod 8)} (1 + 1/p^3)). - Amiram Eldar, Dec 17 2023

A341784 Norms of prime elements in Z[sqrt(-2)], the ring of integers of Q(sqrt(-2)).

Original entry on oeis.org

2, 3, 11, 17, 19, 25, 41, 43, 49, 59, 67, 73, 83, 89, 97, 107, 113, 131, 137, 139, 163, 169, 179, 193, 211, 227, 233, 241, 251, 257, 281, 283, 307, 313, 331, 337, 347, 353, 379, 401, 409, 419, 433, 443, 449, 457, 467, 491, 499, 521, 523, 529, 547, 563
Offset: 1

Views

Author

Jianing Song, Feb 19 2021

Keywords

Comments

Also norms of prime ideals in Z[sqrt(-2)], which is a unique factorization domain. The norm of a nonzero ideal I in a ring R is defined as the size of the quotient ring R/I.
Consists of the primes congruent to 1, 2, 3 modulo 8 and the squares of primes congruent to 5, 7 modulo 8.
For primes p == 1, 3 (mod 8), there are two distinct ideals with norm p in Z[sqrt(2)], namely (x + y*sqrt(-2)) and (x - y*sqrt(-2)), where (x,y) is a solution to x^2 + 2*y^2 = p; for p = 2, (sqrt(-2)) is the unique ideal with norm p; for p == 5, 7 (mod 8), (p) is the only ideal with norm p^2.

Examples

			norm(1 + sqrt(-2)) = norm(1 + sqrt(-2)) = 3;
norm(3 + sqrt(-2)) = norm(3 + sqrt(-2)) = 11;
norm(3 + 2*sqrt(-2)) = norm(3 + 2*sqrt(-2)) = 17;
norm(1 + 3*sqrt(-2)) = norm(1 + 3*sqrt(-2)) = 19.
		

Crossrefs

The number of nonassociative elements with norm n (also the number of distinct ideals with norm n) is given by A002325.
The total number of elements with norm n is given by A033715.
Norms of prime ideals in O_K, where K is the quadratic field with discriminant D and O_K be the ring of integers of K: A055673 (D=8), A341783 (D=5), A055664 (D=-3), A055025 (D=-4), A090348 (D=-7), this sequence (D=-8), A341785 (D=-11), A341786 (D=-15*), A341787 (D=-19), A091727 (D=-20*), A341788 (D=-43), A341789 (D=-67), A341790 (D=-163). Here a "*" indicates the cases where O_K is not a unique factorization domain.

Programs

  • PARI
    isA341784(n) = my(disc=-8); (isprime(n) && kronecker(disc,n)>=0) || (issquare(n, &n) && isprime(n) && kronecker(disc,n)==-1)

A289741 a(n) = Kronecker symbol (-20/n).

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0
Offset: 0

Views

Author

Jianing Song, Dec 27 2018

Keywords

Comments

Period 20: repeat [0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1].
This sequence is one of the three non-principal real Dirichlet characters modulo 20. The other two are Jacobi or Kronecker symbols {(20/n)} (or {(n/20)}) and {((-100)/n)} (A185276).
Note that (Sum_{i=0..19} i*a(i))/(-20) = 2 gives the class number of the imaginary quadratic field Q(sqrt(-5)). The fact Q(sqrt(-5)) has class number 2 implies that Q(sqrt(-5)) is not a unique factorization domain.

Crossrefs

Cf. A035170 (inverse Moebius transform).
Kronecker symbols {(d/n)} where d is a fundamental discriminant with |d| <= 24: A109017 (d=-24), A011586 (d=-23), this sequence (d=-20), A011585 (d=-19), A316569 (d=-15), A011582 (d=-11), A188510 (d=-8), A175629 (d=-7), A101455 (d=-4), A102283 (d=-3), A080891 (d=5), A091337 (d=8), A110161 (d=12), A011583 (d=13), A011584 (d=17), A322829 (d=21), A322796 (d=24).

Programs

  • Mathematica
    Array[KroneckerSymbol[-20, #]&, 100, 0] (* Amiram Eldar, Jan 10 2019 *)
  • PARI
    a(n) = kronecker(-20, n)

Formula

a(n) = 1 for n in A045797; -1 for n in A045798; 0 for n that are not coprime with 20.
Completely multiplicative with a(p) = a(p mod 20) for primes p.
a(n) = A080891(n)*A101455(n).
a(n) = -a(n+10) = -a(-n) for all n in Z.
Multiplicative with a(2) = a(5) = 0, a(p) = (-1)^floor(p/10) otherwise; equivalently: a(n) = (-1)^floor(n/10) if n is coprime to 2*5, 0 otherwise. - M. F. Hasler, Feb 28 2022

A114643 Number of real primitive Dirichlet characters modulo n.

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 1, 2, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 2, 1
Offset: 1

Views

Author

Steven Finch, Feb 16 2006

Keywords

Comments

a(n) = 1 if either n or -n is a fundamental discriminant (not both); a(n) = 2 if n and -n are fundamental discriminants; a(n) = 0 otherwise. Also, Sum_{k=1..n} a(k) is asymptotic to (6/Pi^2)*n.
From Jianing Song, Feb 27 2019: (Start)
If n is an odd squarefree number, then a(n) = 1, where the unique real primitive Dirichlet character modulo n is {Kronecker(n,k)} = {Jacobi(k,n)} if n == 1 (mod 4) and {Kronecker(-n,k)} = {Jacobi(k,n)} if n == 3 (mod 4).
If n = 4*m, m is an odd squarefree number, then a(n) is also 1, where the unique real primitive Dirichlet character modulo n is {Kronecker(-n,k)} if m == 1 (mod 4) and {Kronecker(n,k)} if m == 3 (mod 4).
If n is 8 times an odd squarefree number, then a(n) = 2, where the two real primitive Dirichlet characters modulo n are {Kronecker(n,k)} and {Kronecker(-n,k)}.
a(n) = 0 if n == 2 (mod 4), n is divisible by 16 or the square of an odd prime. (End)
Mobius transform of A060594. - Jianing Song, Mar 02 2019

Examples

			From _Jianing Song_, Feb 27 2019: (Start)
For n = 5, the only real primitive Dirichlet characters modulo n is {Kronecker(5,k)} = [0, 1, -1, -1, 1] = A080891, so a(5) = 1.
For n = 8, the real primitive Dirichlet characters modulo n are {Kronecker(8,k)} = [0, 1, 0, -1, 0, -1, 0, 1] = A091337 and [0, 1, 0, 1, 0, -1, 0, -1] = A188510, so a(8) = 2.
For n = 20, the only real primitive Dirichlet characters modulo n is {Kronecker(-20,k)} = [0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1] = A289741, so a(20) = 1. (End)
		

References

  • W. Ellison and F. Ellison, Prime Numbers, Wiley, 1985, pp. 224-226.

Crossrefs

Cf. A160498 (number of cubic primitive Dirichlet characters modulo n), A160499 (number of quartic primitive Dirichlet characters modulo n).
Cf. A060594 (number of solutions to x^2 == 1 (mod n)).

Programs

  • Maple
    A114643 := proc(n)
        local a,pf,p,r;
        a := 1 ;
        for pf in ifactors(n)[2] do
            p := op(1,pf);
            r := op(2,pf);
            if p = 2 then
                if r =  1 then
                    a := 0 ;
                elif r =  2 then
                    ;
                elif r =  3 then
                    a := a*2 ;
                elif r >=  4 then
                    a := 0 ;
                end if;
            else
                if r =1 then
                    ;
                else
                    a := 0 ;
                end if;
            end if;
        end do:
        a ;
    end proc:
    seq(A114643(n),n=1..40) ; # R. J. Mathar, Mar 02 2015
    # Alternative:
    f:= proc(n) local r,v,F;
      v:= padic:-ordp(n,2);
      if v = 1 or v >= 4 then return 0
      elif v = 3 then r:= 2
      else r:= 1
      fi;
      if numtheory:-issqrfree(n/2^v) then r else 0 fi
    end proc:
    map(f, [$1..100]); # Robert Israel, Oct 08 2017
  • Mathematica
    a[n_] := Sum[ MoebiusMu[n/d] * Sum[ If[ Mod[i^2 - 1, d] == 0, 1, 0], {i, 2, d}], {d, Divisors[n]}]; a[1] = 1; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Jun 20 2013, after Steven Finch *)
    f[2, e_] := Which[e == 1, 0, e == 2, 1, e == 3, 2, e >= 4, 0]; f[p_, e_] := If[e == 1, 1, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
  • PARI
    a(n)=sum(d=1, n, if(n%d==0, moebius(n/d)*sum(i=1, d, if((i^2-1)%d, 0, 1)), 0)) \\ Steven Finch, Jun 09 2009

Formula

This sequence is multiplicative with a(2) = 0, a(4) = 1, a(8) = 2, a(2^r) = 0 for r > 3, a(p) = 1 for prime p > 2 and a(p^r) = 0 for r > 1. - Steven Finch, Mar 08 2006 (With correction by Jianing Song, Jun 28 2018)
Dirichlet g.f.: zeta(s)*(1 + 2^(-2s) + 2^(1-3s))/(zeta(2s)*(1 + 2^(-s))). - R. J. Mathar, Jul 03 2011

A322796 a(n) = Kronecker symbol (6/n).

Original entry on oeis.org

0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0
Offset: 0

Views

Author

Jianing Song, Dec 26 2018

Keywords

Comments

Period 24: repeat [0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1].
Also a(n) = Kronecker symbol (24/n).
This sequence is one of the seven non-principal real Dirichlet characters modulo 24. The other six are Jacobi or Kronecker symbols {(-6/n)} (or {(n/6)}, {(-24/n)}, {(n/24)}, A109017), {(-12/n)} (or {(n/12)}, A134667), {(12/n)} (A110161), {(-18/n)} (or {(-72/n)}), {(18/n)} (or {(72/n)}, {(n/72)}) and {(-36/n)}. These sequences all become the same after taking absolute values.

Crossrefs

Cf. A035188 (inverse Moebius transform).
Kronecker symbols {(d/n)} where d is a fundamental discriminant with |d| <= 24: A109017 (d=-24), A011586 (d=-23), A289741 (d=-20), A011585 (d=-19), A316569 (d=-15), A011582 (d=-11), A188510 (d=-8), A175629 (d=-7), A101455 (d=-4), A102283 (d=-3), A080891 (d=5), A091337 (d=8), A110161 (d=12), A011583 (d=13), A011584 (d=17), A322829 (d=21), this sequence (d=24).

Programs

  • Magma
    [KroneckerSymbol(6, n): n in [0..100]]; // Vincenzo Librandi, Jan 01 2019
  • Mathematica
    Array[KroneckerSymbol[6, #] &, 105, 0] (* Michael De Vlieger, Dec 31 2018 *)
    Table[KroneckerSymbol[6, n], {n, 0, 100}] (* Vincenzo Librandi, Jan 01 2019 *)
  • PARI
    a(n) = kronecker(6, n); \\ --- Argument order corrected by Antti Karttunen, Sep 27 2019
    

Formula

a(n) = 1 for n == 1, 5, 19, 23 (mod 24); -1 for n == 7, 11, 13, 17 (mod 24); 0 for n that are not coprime with 21.
Completely multiplicative with a(p) = a(p mod 24) for primes p.
a(n) = A091337(n)*A102283(n).
a(n) = A109017(n+12) = A109017(n-12).
a(n) = a(-n) = a(n+24) for all n in Z.

Extensions

Definition corrected by Antti Karttunen, Sep 28 2019
Showing 1-10 of 16 results. Next