A359906
Number of integer partitions of n with integer mean and integer median.
Original entry on oeis.org
1, 2, 2, 4, 2, 8, 2, 10, 9, 14, 2, 39, 2, 24, 51, 49, 2, 109, 2, 170, 144, 69, 2, 455, 194, 116, 381, 668, 2, 1378, 2, 985, 956, 316, 2043, 4328, 2, 511, 2293, 6656, 2, 8634, 2, 8062, 14671, 1280, 2, 26228, 8035, 15991, 11614, 25055, 2, 47201, 39810, 65092
Offset: 1
The a(1) = 1 through a(9) = 9 partitions:
1 2 3 4 5 6 7 8 9
11 111 22 11111 33 1111111 44 333
31 42 53 432
1111 51 62 441
222 71 522
321 2222 531
411 3221 621
111111 3311 711
5111 111111111
11111111
These partitions are ranked by
A360009.
A360005(n)/2 gives median of prime indices.
-
Table[Length[Select[IntegerPartitions[n], IntegerQ[Mean[#]]&&IntegerQ[Median[#]]&]],{n,1,30}]
A326643
Number of subsets of {1..n} whose mean and geometric mean are both integers.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 30, 31, 32, 33, 34, 35, 41, 46, 47, 70, 71, 72, 73, 74, 102, 103, 104, 105, 143, 144, 145, 146, 151, 152, 153, 154, 155, 161, 162, 163, 244, 252, 280, 281, 282, 283, 409, 410, 416, 417, 418, 419
Offset: 0
The a(1) = 1 through a(12) = 16 subsets:
{1} {1} {1} {1} {1} {1} {1} {1} {1} {1} {1} {1}
{2} {2} {2} {2} {2} {2} {2} {2} {2} {2} {2}
{3} {3} {3} {3} {3} {3} {3} {3} {3} {3}
{4} {4} {4} {4} {4} {4} {4} {4} {4}
{5} {5} {5} {5} {5} {5} {5} {5}
{6} {6} {6} {6} {6} {6} {6}
{7} {7} {7} {7} {7} {7}
{8} {8} {8} {8} {8}
{2,8} {9} {9} {9} {9}
{1,9} {10} {10} {10}
{2,8} {1,9} {11} {11}
{2,8} {1,9} {12}
{2,8} {1,9}
{2,8}
{3,6,12}
{3,4,9,12}
Subsets whose geometric mean is an integer are
A326027.
Subsets whose mean is an integer are
A051293.
Partitions with integer mean and geometric mean are
A326641.
Strict partitions with integer mean and geometric mean are
A326029.
-
Table[Length[Select[Subsets[Range[n]],IntegerQ[Mean[#]]&&IntegerQ[GeometricMean[#]]&]],{n,0,10}]
A326850
Number of strict integer partitions of n whose maximum part divides n.
Original entry on oeis.org
0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 1, 10, 1, 10, 5, 12, 1, 23, 1, 18, 15, 23, 1, 49, 1, 34, 36, 38, 1, 106, 1, 54, 79, 81, 1, 189, 1, 124, 162, 104, 1, 412, 1, 145, 307, 289, 1, 608, 12, 437, 559, 256, 1, 1432, 1, 340, 981, 976, 79, 1730, 1
Offset: 0
The initial terms count the following partitions:
1: (1)
2: (2)
3: (3)
4: (4)
5: (5)
6: (6)
6: (3,2,1)
7: (7)
8: (8)
8: (4,3,1)
9: (9)
10: (10)
10: (5,4,1)
10: (5,3,2)
11: (11)
12: (12)
12: (6,5,1)
12: (6,4,2)
12: (6,3,2,1)
13: (13)
14: (14)
14: (7,6,1)
14: (7,5,2)
14: (7,4,3)
14: (7,4,2,1)
15: (15)
15: (5,4,3,2,1)
Positions of 1's appear to be
A308168.
The non-strict case is given by
A067538.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Divisible[n,Max[#]]&]],{n,0,30}]
A340828
Number of strict integer partitions of n whose maximum part is a multiple of their length.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 3, 2, 4, 5, 6, 6, 7, 8, 11, 10, 13, 17, 18, 21, 24, 27, 30, 35, 39, 46, 53, 61, 68, 79, 87, 97, 110, 123, 139, 157, 175, 196, 222, 247, 278, 312, 347, 385, 433, 476, 531, 586, 651, 720, 800, 883, 979, 1085, 1200, 1325, 1464, 1614, 1777
Offset: 1
The a(1) = 1 through a(16) = 10 partitions (A..G = 10..16):
1 2 3 4 5 6 7 8 9 A B C D E F G
21 41 42 43 62 63 64 65 84 85 86 87 A6
321 61 81 82 83 A2 A3 A4 A5 C4
621 631 A1 642 C1 C2 C3 E2
4321 632 651 643 653 E1 943
641 921 652 932 654 952
931 941 942 961
8321 951 C31
C21 8431
8421 8521
54321
Note: A-numbers of Heinz-number sequences are in parentheses below.
A072233 counts partitions by sum and length, with strict case
A008289.
A096401 counts strict partition with length equal to minimum.
A102627 counts strict partitions with length dividing sum.
A326842 counts partitions whose length and parts all divide sum (
A326847).
A326850 counts strict partitions whose maximum part divides sum.
A326851 counts strict partitions with length and maximum dividing sum.
A340829 counts strict partitions with Heinz number divisible by sum.
A340830 counts strict partitions with all parts divisible by length.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Divisible[Max@@#,Length[#]]&]],{n,30}]
A359900
Number of strict odd-length integer partitions of n whose parts do not have the same mean as median.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 4, 5, 4, 8, 10, 8, 15, 18, 17, 26, 27, 31, 43, 51, 53, 59, 81, 87, 109, 127, 115, 169, 194, 213, 255, 243, 322, 379, 431, 478, 487, 629, 667, 804, 907, 902, 1151, 1294, 1439, 1530, 1674, 2031, 2290, 2559, 2829, 2973, 3296, 3939
Offset: 0
The a(7) = 1 through a(16) = 15 partitions (A=10, B=11, C=12, D=13):
(421) (431) (621) (532) (542) (651) (643) (653) (762) (754)
(521) (541) (632) (732) (652) (743) (843) (763)
(631) (641) (831) (742) (752) (861) (853)
(721) (731) (921) (751) (761) (942) (862)
(821) (832) (842) (A32) (871)
(841) (851) (A41) (943)
(931) (932) (B31) (952)
(A21) (941) (C21) (961)
(A31) (A42)
(B21) (A51)
(B32)
(B41)
(C31)
(D21)
(64321)
The complement is counted by
A359899.
A008289 counts strict partitions by mean.
Cf.
A000016,
A065795,
A066571,
A102627,
A240850,
A240851,
A327475,
A359894,
A359906,
A359907,
A359910.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&OddQ[Length[#]]&&Mean[#]!=Median[#]&]],{n,0,30}]
A360069
Number of integer partitions of n whose multiset of multiplicities has integer mean.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 9, 9, 13, 16, 25, 26, 39, 42, 62, 67, 95, 107, 147, 168, 225, 245, 327, 381, 471, 565, 703, 823, 1038, 1208, 1443, 1743, 2088, 2439, 2937, 3476, 4163, 4921, 5799, 6825, 8109, 9527, 11143, 13122, 15402, 17887, 20995, 24506, 28546, 33234, 38661
Offset: 0
The a(1) = 1 through a(8) = 13 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (2111) (51) (61) (62)
(11111) (222) (421) (71)
(321) (2221) (431)
(2211) (4111) (521)
(3111) (211111) (2222)
(111111) (1111111) (3311)
(5111)
(221111)
(311111)
(11111111)
For example, the partition (3,2,1,1,1,1) has multiplicities (1,1,4) with mean 2, so is counted under a(9). On the other hand, the partition (3,2,2,1,1) has multiplicities (1,2,2) with mean 5/3, so is not counted under a(9).
These partitions are ranked by
A067340 (prime signature has integer mean).
The case where the parts have integer mean also is ranked by
A359905.
-
Table[Length[Select[IntegerPartitions[n], IntegerQ[Mean[Length/@Split[#]]]&]],{n,0,30}]
A326624
Heinz numbers of non-constant integer partitions whose geometric mean is an integer.
Original entry on oeis.org
14, 42, 46, 57, 76, 106, 126, 161, 183, 185, 194, 196, 228, 230, 302, 371, 378, 393, 399, 412, 424, 454, 477, 515, 588, 622, 679, 684, 687, 722, 742, 781, 786, 838, 1057, 1064, 1077, 1082, 1115, 1134, 1150, 1157, 1159, 1219, 1244, 1272, 1322, 1563, 1589, 1654
Offset: 1
The sequence of terms together with their prime indices begins:
14: {1,4}
42: {1,2,4}
46: {1,9}
57: {2,8}
76: {1,1,8}
106: {1,16}
126: {1,2,2,4}
161: {4,9}
183: {2,18}
185: {3,12}
194: {1,25}
196: {1,1,4,4}
228: {1,1,2,8}
230: {1,3,9}
302: {1,36}
371: {4,16}
378: {1,2,2,2,4}
393: {2,32}
399: {2,4,8}
412: {1,1,27}
The case with prime powers is
A326623.
Subsets whose geometric mean is an integer are
A326027.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],!PrimePowerQ[#]&&IntegerQ[GeometricMean[primeMS[#]]]&]
A340830
Number of strict integer partitions of n such that every part is a multiple of the number of parts.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 3, 1, 4, 1, 4, 1, 6, 1, 5, 2, 6, 1, 8, 1, 7, 4, 7, 1, 12, 1, 8, 6, 9, 1, 16, 1, 10, 9, 11, 1, 21, 1, 12, 13, 12, 1, 28, 1, 13, 17, 16, 1, 33, 1, 19, 22, 15, 1, 45, 1, 16, 28, 25, 1, 47, 1, 28, 34, 18
Offset: 1
The a(n) partitions for n = 1, 6, 10, 14, 18, 20, 24, 26, 30:
1 6 10 14 18 20 24 26 30
4,2 6,4 8,6 10,8 12,8 16,8 18,8 22,8
8,2 10,4 12,6 14,6 18,6 20,6 24,6
12,2 14,4 16,4 20,4 22,4 26,4
16,2 18,2 22,2 24,2 28,2
9,6,3 14,10 14,12 16,14
12,9,3 16,10 18,12
15,6,3 20,10
15,9,6
18,9,3
21,6,3
15,12,3
Note: A-numbers of Heinz-number sequences are in parentheses below.
The case where length divides sum also is
A340827.
The version for factorizations is
A340851.
Factorization of this type are counted by
A340853.
A072233 counts partitions by sum and length, with strict case
A008289.
A102627 counts strict partitions whose length divides sum.
A326850 counts strict partitions whose maximum part divides sum.
A326851 counts strict partitions with length and maximum dividing sum.
A340828 counts strict partitions with length divisible by maximum.
A340829 counts strict partitions with Heinz number divisible by sum.
A070925
Number of subsets of A = {1,2,...,n} that have the same center of gravity as A, i.e., (n+1)/2.
Original entry on oeis.org
1, 1, 3, 3, 7, 7, 19, 17, 51, 47, 151, 137, 471, 427, 1519, 1391, 5043, 4651, 17111, 15883, 59007, 55123, 206259, 193723, 729095, 688007, 2601639, 2465133, 9358943, 8899699, 33904323, 32342235, 123580883, 118215779, 452902071, 434314137, 1667837679, 1602935103
Offset: 1
Sharon Sela (sharonsela(AT)hotmail.com), May 20 2002
Of the 32 (2^5) sets which can be constructed from the set A = {1,2,3,4,5} only the sets {3}, {2, 3, 4}, {2, 4}, {1, 2, 4, 5}, {1, 2, 3, 4, 5}, {1, 3, 5}, {1, 5} give an average of 3.
Including the empty set gives
A222955.
A327481 counts subsets by integer mean.
-
Needs["DiscreteMath`Combinatorica`"]; f[n_] := Block[{s = Subsets[n], c = 0, k = 2}, While[k < 2^n + 1, If[ (Plus @@ s[[k]]) / Length[s[[k]]] == (n + 1)/2, c++ ]; k++ ]; c]; Table[ f[n], {n, 1, 20}]
(* second program *)
Table[Length[Select[Subsets[Range[0,n]],Mean[#]==n/2&]],{n,0,10}] (* Gus Wiseman, Apr 15 2023 *)
A360250
Number of integer partitions of n where the parts have greater mean than the distinct parts.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 2, 2, 3, 3, 9, 5, 13, 15, 18, 20, 37, 34, 59, 51, 68, 92, 134, 121, 167, 203, 251, 282, 387, 375, 537, 561, 714, 888, 958, 1042, 1408, 1618, 1939, 2076, 2650, 2764, 3479, 3863, 4431, 5387, 6520, 6688, 8098, 9041, 10614, 12084, 14773, 15469
Offset: 0
The a(5) = 1 through a(12) = 5 partitions:
(221) . (331) (332) (441) (442) (443) (552)
(2221) (22211) (3321) (3331) (551) (4431)
(22221) (222211) (3332) (33321)
(4331) (44211)
(4421) (2222211)
(33221)
(33311)
(222221)
(2222111)
For example, the partition y = (4,3,3,1) has mean 11/4 and distinct parts {1,3,4} with mean 8/5, so y is counted under a(11).
These partitions have ranks
A360252.
A008284 counts partitions by number of parts.
A116608 counts partitions by number of distinct parts.
A359894 counts partitions with mean different from median, ranks
A359890.
A360071 counts partitions by number of parts and number of distinct parts.
-
Table[Length[Select[IntegerPartitions[n],Mean[#]>Mean[Union[#]]&]],{n,0,30}]
Comments