A111301
Triangle read by rows: T(n,k) is the number of Dyck n-paths containing k even-length descents to ground level.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 5, 8, 1, 14, 23, 5, 42, 70, 19, 1, 132, 222, 68, 7, 429, 726, 240, 34, 1, 1430, 2431, 847, 145, 9, 4862, 8294, 3003, 583, 53, 1, 16796, 28730, 10712, 2275, 262, 11, 58786, 100776, 38454, 8736, 1183, 76, 1, 208012, 357238, 138890, 33252, 5068
Offset: 0
Table begins
k: ..0....1....2....3....
n
0 |..1
1 |..1
2 |..1....1
3 |..2....3
4 |..5....8....1
5 |.14...23....5
6 |.42...70...19....1
7 |132..222...68....7
a(3,1)=3 because the Dyck 3-paths containing one even-length descent to ground level are UUDUDD, UDUUDD, UUDDUD.
Row sums are the Catalan numbers
A000108.
-
TableForm[Table[k/(n-k)Binomial[2n-2k, n]+(2k+1)/(2n-2k-1)Binomial[2n-2k-1, n], {n, 10}, {k, 0, n/2}]]
Join[{1}, Table[k/(n - k) Binomial[2 n - 2 k, n] + (2 k + 1)/(2 n - 2 k - 1) Binomial[2 n - 2 k - 1, n], {n, 25}, {k, 0, n/2}] // Flatten] (* G. C. Greubel, Jul 28 2017 *)
A108747
Triangle read by rows: T(n,k) is the number of Grand Dyck paths of semilength n and having k returns to the x-axis.
Original entry on oeis.org
2, 2, 4, 4, 8, 8, 10, 20, 24, 16, 28, 56, 72, 64, 32, 84, 168, 224, 224, 160, 64, 264, 528, 720, 768, 640, 384, 128, 858, 1716, 2376, 2640, 2400, 1728, 896, 256, 2860, 5720, 8008, 9152, 8800, 7040, 4480, 2048, 512, 9724, 19448, 27456, 32032, 32032, 27456, 19712, 11264, 4608, 1024
Offset: 1
T(2,2)=4 because we have u(d)u(d), u(d)d(u), d(u)d(u) and d(u)u(d) (return steps to x-axis shown between parentheses).
Triangle begins:
2;
2, 4;
4, 8, 8;
10, 20, 24, 16;
28, 56, 72, 64, 32;
-
T:= (n,k)-> 2^k*k*binomial(2*n-k,n)/(2*n-k): for n from 1 to 10 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
-
nn=10;c=(1-(1-4x)^(1/2))/(2x);f[list_]:=Select[list,#>0&];Map[f,Drop[CoefficientList[Series[1/(1-2y x c),{x,0,nn}],{x,y}],1]]//Flatten (* Geoffrey Critzer, Jan 30 2012 *)
A127631
Square of Riordan array (1, x*c(x)) where c(x) is the g.f. of A000108.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 6, 4, 1, 0, 21, 16, 6, 1, 0, 80, 66, 30, 8, 1, 0, 322, 280, 143, 48, 10, 1, 0, 1348, 1216, 672, 260, 70, 12, 1, 0, 5814, 5385, 3150, 1344, 425, 96, 14, 1, 0, 25674, 24244, 14799, 6784, 2400, 646, 126, 16, 1
Offset: 0
Triangle begins
1;
0, 1;
0, 2, 1;
0, 6, 4, 1;
0, 21, 16, 6, 1;
0, 80, 66, 30, 8, 1;
0, 322, 280, 143, 48, 10, 1;
0, 1348, 1216, 672, 260, 70, 12, 1;
0, 5814, 5385, 3150, 1344, 425, 96, 14, 1;
0, 25674, 24244, 14799, 6784, 2400, 646, 126, 16, 1;
0, 115566, 110704, 69828, 33814, 13002, 3960, 931, 160, 18, 1;
-
[[k eq n select 1 else (k/n)*(&+[Binomial(2*j+k-1,j)*Binomial(2*n -k-j-1, n-k-j): j in [0..n-k]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 05 2019
-
T[n_, k_]:= If[k==n, 1, (k/n)*Sum[Binomial[2*j-k-1, j-k]*Binomial[2*n-j- 1, n-j], {j,k,n}]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 05 2019 *)
-
T(n,k):=if k=n then 1 else if n=0 then 0 else (k*sum((binomial(-k+2*i-1,i-k))*(binomial(2*n-i-1,n-i)),i,k,n))/n; /* Vladimir Kruchinin, Apr 05 2019 */
-
{T(n,k) = if(k==n, 1, (k/n)*sum(j=0,n-k, binomial(2*j+k-1, j)* binomial(2*n-k-j-1, n-k-j)))}; \\ G. C. Greubel, Apr 05 2019
-
def T(n, k):
if k == n: return 1
return (k*sum(binomial(2*j+k-1, j)* binomial(2*n-k-j-1, n-k-j) for j in (0..n-k)))//n
[[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 05 2019
Original entry on oeis.org
1, 7, 21, 70, 245, 882, 3234, 12012, 45045, 170170, 646646, 2469012, 9464546, 36402100, 140408100, 542911320, 2103781365, 8167621770, 31762973550, 123708423300, 482462850870, 1883902560540, 7364346373020, 28817007546600, 112866612890850, 442437122532132, 1735714865318364
Offset: 0
-
a[n_]:=(7*Binomial[2n,n]-5*KroneckerDelta[n,0])/2; Array[a,27,0] (* Stefano Spezia, Feb 14 2025 *)
A168377
Riordan array (1/(1 + x), x*c(x)), where c(x) is the o.g.f. of Catalan numbers A000108.
Original entry on oeis.org
1, -1, 1, 1, 0, 1, -1, 2, 1, 1, 1, 3, 4, 2, 1, -1, 11, 10, 7, 3, 1, 1, 31, 32, 21, 11, 4, 1, -1, 101, 100, 69, 37, 16, 5, 1, 1, 328, 329, 228, 128, 59, 22, 6, 1, -1, 1102, 1101, 773, 444, 216, 88, 29, 7, 1, 1, 3760, 3761, 2659, 1558, 785, 341, 125, 37, 8, 1
Offset: 0
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
-1, 1;
1, 0, 1;
-1, 2, 1, 1;
1, 3, 4, 2, 1;
-1, 11, 10, 7, 3, 1;
1, 31, 32, 21, 11, 4, 1;
-1, 101, 100, 69, 37, 16, 5, 1;
...
From _Philippe Deléham_, Sep 14 2014: (Start)
Production matrix begins:
-1, 1
0, 1, 1
0, 1, 1, 1
0, 1, 1, 1, 1
0, 1, 1, 1, 1, 1
0, 1, 1, 1, 1, 1, 1
0, 1, 1, 1, 1, 1, 1, 1
0, 1, 1, 1, 1, 1, 1, 1, 1
... (End)
- Emeric Deutsch, Luca Ferrari, and Simone Rinaldi, Production matrices and Riordan arrays, arXiv:math/0702638 [math.CO], 2007.
- Emeric Deutsch, Luca Ferrari, and Simone Rinaldi, Production matrices and Riordan arrays, Annals of Combinatorics, 13 (2009), 65-85.
- L. W. Shapiro, S. Getu, W.-J. Woan, and L. C. Woodson, The Riordan group, Discrete Applied Mathematics, 34(1-3) (1991), 229-239.
- Wikipedia, Riordan array.
Cf.
A000012,
A000108,
A000124,
A023443,
A032357,
A033297,
A033999,
A091491,
A096470,
A106566,
A127540.
-
A000108(n) = binomial(2*n, n)/(n+1);
A032357(n) = sum(k=0, n, (-1)^(n-k)*A000108(k));
T(n, k) = if ((k==0), (-1)^n, if ((n<0) || (k<0), 0, if (k==1, A032357(n-1), if (n > k-1, T(n, k-1) - T(n-1, k-2), 0))));
for(n=0, 10, for (k=0, n, print1(T(n, k), ", ")); print); \\ Petros Hadjicostas, Aug 08 2020
A236843
Triangle read by rows related to the Catalan transform of the Fibonacci numbers.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 5, 9, 4, 1, 14, 28, 14, 6, 1, 42, 90, 48, 27, 7, 1, 132, 297, 165, 110, 35, 9, 1, 429, 1001, 572, 429, 154, 54, 10, 1, 1430, 3432, 2002, 1638, 637, 273, 65, 12, 1, 4862, 11934, 7072, 6188, 2548, 1260, 350, 90, 13, 1, 16796, 41990, 25194, 23256, 9996, 5508, 1700, 544, 104, 15, 1
Offset: 0
Triangle begins:
1;
1, 1;
2, 3, 1;
5, 9, 4, 1;
14, 28, 14, 6, 1;
42, 90, 48, 27, 7, 1;
132, 297, 165, 110, 35, 9, 1;
Production matrix is:
1...1
1...2...1
0...1...1...1
0...1...1...2...1
0...0...0...1...1...1
0...0...0...1...1...2...1
0...0...0...0...0...1...1...1
0...0...0...0...0...1...1...2...1
0...0...0...0...0...0...0...1...1...1
0...0...0...0...0...0...0...1...1...2...1
0...0...0...0...0...0...0...0...0...1...1...1
...
-
F:=Factorial;
A236843:= func< n,k | (1/4)*(6*k+5-(-1)^k)*F(2*n-Floor(k/2))/(F(n-k)*F(n+Floor((k+1)/2)+1)) >;
[A236843(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 13 2022
-
T[n_, k_]:= (1/4)*(6*k+5-(-1)^k)*(2*n-Floor[k/2])!/((n-k)!*(n+Floor[(k+1)/2]+1)!);
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 13 2022 *)
-
T(n, k) = (1/4)*(6*k + 5 - (-1)^k)*(2*n - (k\2))!/((n-k)!*(n + (k+1)\2 + 1)!) \\ Andrew Howroyd, Jan 04 2023
-
F=factorial
def A236843(n,k): return (1/2)*(3*k+2+(k%2))*F(2*n-(k//2))/(F(n-k)*F(n+((k+1)//2)+1))
flatten([[A236843(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 13 2022
A307495
Expansion of Sum_{k>=0} k!*((1 - sqrt(1 - 4*x))/2)^k.
Original entry on oeis.org
1, 1, 3, 12, 57, 312, 1950, 13848, 111069, 998064, 9957186, 109305240, 1309637274, 17006109072, 237888664572, 3566114897520, 57030565449765, 969154436550240, 17439499379433690, 331268545604793240, 6624013560942038670, 139080391965533653200, 3059323407592802838180, 70355685298375014175440
Offset: 0
-
nmax = 23; CoefficientList[Series[Sum[k! ((1 - Sqrt[1 - 4 x])/2)^k, {k, 0, nmax}], {x, 0, nmax}], x]
nmax = 23; CoefficientList[Series[1/(1 + ContinuedFractionK[-Floor[(k + 1)/2] (1 - Sqrt[1 - 4 x])/2, 1, {k, 1, nmax}]), {x, 0, nmax}], x]
Join[{1}, Table[1/n Sum[Binomial[2n - k - 1, n - k] k k!, {k, n}], {n, 23}]]
A130655
Catalan transform of Catalan numbers C(n+1).
Original entry on oeis.org
1, 2, 7, 28, 119, 524, 2363, 10844, 50446, 237280, 1126437, 5389916, 25967972, 125868952, 613385075, 3003586196, 14771851093, 72936101780, 361419276386, 1796837068400, 8960207761500
Offset: 0
Comments