cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-58 of 58 results.

A111301 Triangle read by rows: T(n,k) is the number of Dyck n-paths containing k even-length descents to ground level.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 8, 1, 14, 23, 5, 42, 70, 19, 1, 132, 222, 68, 7, 429, 726, 240, 34, 1, 1430, 2431, 847, 145, 9, 4862, 8294, 3003, 583, 53, 1, 16796, 28730, 10712, 2275, 262, 11, 58786, 100776, 38454, 8736, 1183, 76, 1, 208012, 357238, 138890, 33252, 5068
Offset: 0

Views

Author

David Callan, Nov 02 2005

Keywords

Comments

Column k is the sum of columns 2k and 2k+1 of A106566.

Examples

			Table begins
k: ..0....1....2....3....
n
0 |..1
1 |..1
2 |..1....1
3 |..2....3
4 |..5....8....1
5 |.14...23....5
6 |.42...70...19....1
7 |132..222...68....7
a(3,1)=3 because the Dyck 3-paths containing one even-length descent to ground level are UUDUDD, UDUUDD, UUDDUD.
		

Crossrefs

Row sums are the Catalan numbers A000108.
A143949 considers odd-length descents to the ground level. - Emeric Deutsch, Oct 05 2008

Programs

  • Mathematica
    TableForm[Table[k/(n-k)Binomial[2n-2k, n]+(2k+1)/(2n-2k-1)Binomial[2n-2k-1, n], {n, 10}, {k, 0, n/2}]]
    Join[{1}, Table[k/(n - k) Binomial[2 n - 2 k, n] + (2 k + 1)/(2 n - 2 k - 1) Binomial[2 n - 2 k - 1, n], {n, 25}, {k, 0, n/2}] // Flatten] (* G. C. Greubel, Jul 28 2017 *)

Formula

See Mathematica line.
From Emeric Deutsch, Oct 05 2008: (Start)
G.f.=G(s,z)=1/[1-z(1+szC)/(1-z^2*C^2)], where C=[1-sqrt(1-4z)]/(2z) is the Catalan function.
The trivariate g.f. H(t,s,z), where t (s) marks odd-length (even-length) descents to ground level and z marks semilength, is H=1/[1-z(t+szC)/(1-z^2*C^2)], where C=[1-sqrt(1-4z)]/(2z) is the Catalan function. (End)

A108747 Triangle read by rows: T(n,k) is the number of Grand Dyck paths of semilength n and having k returns to the x-axis.

Original entry on oeis.org

2, 2, 4, 4, 8, 8, 10, 20, 24, 16, 28, 56, 72, 64, 32, 84, 168, 224, 224, 160, 64, 264, 528, 720, 768, 640, 384, 128, 858, 1716, 2376, 2640, 2400, 1728, 896, 256, 2860, 5720, 8008, 9152, 8800, 7040, 4480, 2048, 512, 9724, 19448, 27456, 32032, 32032, 27456, 19712, 11264, 4608, 1024
Offset: 1

Views

Author

Emeric Deutsch, Jun 23 2005

Keywords

Comments

A Grand Dyck path of semilength n is a path in the half-plane x >= 0, starting at (0,0), ending at (2n,0) and consisting of steps u=(1,1) and d=(1,-1).
Triangle T(n,k), 1 <= k <= n, read by rows, given by [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] DELTA [2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Jun 29 2005
T(n,k) is also equal to the number of grand Dyck paths of semilength n having k symmetric vertices. A symmetric vertex is a vertex in the first half of the path (not including the midpoint) that is a mirror image of a vertex in the second half, when with respect to the reflection along the vertical line through the midpoint of the path. - Sergi Elizalde, Feb 12 2021

Examples

			T(2,2)=4 because we have u(d)u(d), u(d)d(u), d(u)d(u) and d(u)u(d) (return steps to x-axis shown between parentheses).
Triangle begins:
   2;
   2,  4;
   4,  8,  8;
  10, 20, 24, 16;
  28, 56, 72, 64, 32;
		

Crossrefs

Cf. A000984 (row sums), A000108.

Programs

  • Maple
    T:= (n,k)-> 2^k*k*binomial(2*n-k,n)/(2*n-k): for n from 1 to 10 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
  • Mathematica
    nn=10;c=(1-(1-4x)^(1/2))/(2x);f[list_]:=Select[list,#>0&];Map[f,Drop[CoefficientList[Series[1/(1-2y x c),{x,0,nn}],{x,y}],1]]//Flatten  (* Geoffrey Critzer, Jan 30 2012 *)

Formula

T(n,1) = 2*A000108(n-1).
T(n,n) = 2^n.
T(n,k) = k * 2^k * binomial(2*n-k,n)/(2*n-k) (1 <= k <= n).
G.f.: 1/(1-2*t*z*C), where C = (1-sqrt(1-4*z))/(2*z) is the Catalan function.
T(n,k) = 2^k * A106566(n,k). - Philippe Deléham, Jun 29 2005

A127631 Square of Riordan array (1, x*c(x)) where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 4, 1, 0, 21, 16, 6, 1, 0, 80, 66, 30, 8, 1, 0, 322, 280, 143, 48, 10, 1, 0, 1348, 1216, 672, 260, 70, 12, 1, 0, 5814, 5385, 3150, 1344, 425, 96, 14, 1, 0, 25674, 24244, 14799, 6784, 2400, 646, 126, 16, 1
Offset: 0

Views

Author

Paul Barry, Jan 20 2007

Keywords

Comments

Square of A106566. Row sums are A127632.

Examples

			Triangle begins
  1;
  0,      1;
  0,      2,      1;
  0,      6,      4,     1;
  0,     21,     16,     6,     1;
  0,     80,     66,    30,     8,     1;
  0,    322,    280,   143,    48,    10,    1;
  0,   1348,   1216,   672,   260,    70,   12,   1;
  0,   5814,   5385,  3150,  1344,   425,   96,  14,   1;
  0,  25674,  24244, 14799,  6784,  2400,  646, 126,  16,  1;
  0, 115566, 110704, 69828, 33814, 13002, 3960, 931, 160, 18, 1;
		

Crossrefs

Programs

  • Magma
    [[k eq n select 1 else (k/n)*(&+[Binomial(2*j+k-1,j)*Binomial(2*n -k-j-1, n-k-j): j in [0..n-k]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 05 2019
    
  • Mathematica
    T[n_, k_]:= If[k==n, 1, (k/n)*Sum[Binomial[2*j-k-1, j-k]*Binomial[2*n-j- 1, n-j], {j,k,n}]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 05 2019 *)
  • Maxima
    T(n,k):=if k=n then 1 else if n=0 then 0 else (k*sum((binomial(-k+2*i-1,i-k))*(binomial(2*n-i-1,n-i)),i,k,n))/n; /* Vladimir Kruchinin, Apr 05 2019 */
    
  • PARI
    {T(n,k) = if(k==n, 1, (k/n)*sum(j=0,n-k, binomial(2*j+k-1, j)* binomial(2*n-k-j-1, n-k-j)))}; \\ G. C. Greubel, Apr 05 2019
    
  • Sage
    def T(n, k):
       if k == n: return 1
       return (k*sum(binomial(2*j+k-1, j)* binomial(2*n-k-j-1, n-k-j) for j in (0..n-k)))//n
    [[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 05 2019

Formula

Riordan array (1, x*c(x)*c(x*c(x))), where c(x) is the g.f. of A000108.
T(n+1,1) = A129442(n) = A121988(n+1). - Philippe Deléham, Feb 27 2013
T(n,k) = (k/n)*Sum_{i=k..n} C(2*i-k-1,i-k)*C(2*n-i-1,n-i), T(n,n)=1. - Vladimir Kruchinin, Apr 05 2019

A146533 Catalan transform of A135092.

Original entry on oeis.org

1, 7, 21, 70, 245, 882, 3234, 12012, 45045, 170170, 646646, 2469012, 9464546, 36402100, 140408100, 542911320, 2103781365, 8167621770, 31762973550, 123708423300, 482462850870, 1883902560540, 7364346373020, 28817007546600, 112866612890850, 442437122532132, 1735714865318364
Offset: 0

Views

Author

Philippe Deléham, Oct 31 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=(7*Binomial[2n,n]-5*KroneckerDelta[n,0])/2; Array[a,27,0] (* Stefano Spezia, Feb 14 2025 *)

Formula

a(n) = Sum_{k=0..n} A039599(n,k)*A010687(k) = Sum_{k=0..n} A106566(n,k)*A135092(k).
a(n) = (7*C(2n,n) - 5*0^n)/2.
From Stefano Spezia, Feb 14 2025: (Start)
G.f.: (7/sqrt(1 - 4*x) - 5)/2.
E.g.f.: (7*exp(2*x)*BesselI(0, 2*x) - 5)/2. (End)

Extensions

a(23)-a(26) from Stefano Spezia, Feb 14 2025

A168377 Riordan array (1/(1 + x), x*c(x)), where c(x) is the o.g.f. of Catalan numbers A000108.

Original entry on oeis.org

1, -1, 1, 1, 0, 1, -1, 2, 1, 1, 1, 3, 4, 2, 1, -1, 11, 10, 7, 3, 1, 1, 31, 32, 21, 11, 4, 1, -1, 101, 100, 69, 37, 16, 5, 1, 1, 328, 329, 228, 128, 59, 22, 6, 1, -1, 1102, 1101, 773, 444, 216, 88, 29, 7, 1, 1, 3760, 3761, 2659, 1558, 785, 341, 125, 37, 8, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 24 2009

Keywords

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
   1;
  -1,   1;
   1,   0,   1;
  -1,   2,   1,  1;
   1,   3,   4,  2,  1;
  -1,  11,  10,  7,  3,  1;
   1,  31,  32, 21, 11,  4, 1;
  -1, 101, 100, 69, 37, 16, 5, 1;
  ...
From _Philippe Deléham_, Sep 14 2014: (Start)
Production matrix begins:
  -1, 1
   0, 1, 1
   0, 1, 1, 1
   0, 1, 1, 1, 1
   0, 1, 1, 1, 1, 1
   0, 1, 1, 1, 1, 1, 1
   0, 1, 1, 1, 1, 1, 1, 1
   0, 1, 1, 1, 1, 1, 1, 1, 1
   ... (End)
		

Crossrefs

Programs

  • PARI
    A000108(n) = binomial(2*n, n)/(n+1);
    A032357(n) = sum(k=0, n, (-1)^(n-k)*A000108(k));
    T(n, k) = if ((k==0), (-1)^n, if ((n<0) || (k<0), 0, if (k==1, A032357(n-1), if (n > k-1, T(n, k-1) - T(n-1, k-2), 0))));
    for(n=0, 10, for (k=0, n, print1(T(n, k), ", ")); print); \\ Petros Hadjicostas, Aug 08 2020

Formula

T(n,0) = (-1)^n and T(n,n) = 1.
Sum_{0 <= k <= n} T(n,k) = A032357(n).
From Petros Hadjicostas, Aug 08 2020: (Start)
T(n,k) = T(n,k-1) - T(n-1,k-2) for 2 <= k <= n with initial conditions T(n,0) = (-1)^n (n >= 0) and T(n,1) = A032357(n-1) (n >= 1).
T(n,2) = A033297(n).
T(n,n-1) = n - 2 for n >= 1.
|T(n,k)| = |A096470(n,n-k)| for 0 <= k <= n.
Bivariate o.g.f.: 1/((1 + x)*(1 - x*y*c(x))), where c(x) is the o.g.f. of A000108.
Bivariate o.g.f.: (1 - y + x*y*c(x))/((1 + x)*(1 - y + x*y^2)).
Bivariate o.g.f. of |T(n,k)|: (o.g.f. of T(n,k)) + 2*x/(1 - x^2). (End)

A236843 Triangle read by rows related to the Catalan transform of the Fibonacci numbers.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 9, 4, 1, 14, 28, 14, 6, 1, 42, 90, 48, 27, 7, 1, 132, 297, 165, 110, 35, 9, 1, 429, 1001, 572, 429, 154, 54, 10, 1, 1430, 3432, 2002, 1638, 637, 273, 65, 12, 1, 4862, 11934, 7072, 6188, 2548, 1260, 350, 90, 13, 1, 16796, 41990, 25194, 23256, 9996, 5508, 1700, 544, 104, 15, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 01 2014

Keywords

Comments

Row sums are A109262(n+1).

Examples

			Triangle begins:
    1;
    1,   1;
    2,   3,   1;
    5,   9,   4,   1;
   14,  28,  14,   6,  1;
   42,  90,  48,  27,  7, 1;
  132, 297, 165, 110, 35, 9, 1;
Production matrix is:
  1...1
  1...2...1
  0...1...1...1
  0...1...1...2...1
  0...0...0...1...1...1
  0...0...0...1...1...2...1
  0...0...0...0...0...1...1...1
  0...0...0...0...0...1...1...2...1
  0...0...0...0...0...0...0...1...1...1
  0...0...0...0...0...0...0...1...1...2...1
  0...0...0...0...0...0...0...0...0...1...1...1
  ...
		

Crossrefs

Columns: A000108 (k=0), A000245 (k=1), A002057 (k=2), A003517 (k=3), A000588 (k=4), A001392 (k=5), A003519 (k=6), A090749 (k=7), A000590 (k=8).

Programs

  • Magma
    F:=Factorial;
    A236843:= func< n,k | (1/4)*(6*k+5-(-1)^k)*F(2*n-Floor(k/2))/(F(n-k)*F(n+Floor((k+1)/2)+1)) >;
    [A236843(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 13 2022
    
  • Mathematica
    T[n_, k_]:= (1/4)*(6*k+5-(-1)^k)*(2*n-Floor[k/2])!/((n-k)!*(n+Floor[(k+1)/2]+1)!);
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 13 2022 *)
  • PARI
    T(n, k) = (1/4)*(6*k + 5 - (-1)^k)*(2*n - (k\2))!/((n-k)!*(n + (k+1)\2 + 1)!) \\ Andrew Howroyd, Jan 04 2023
  • SageMath
    F=factorial
    def A236843(n,k): return (1/2)*(3*k+2+(k%2))*F(2*n-(k//2))/(F(n-k)*F(n+((k+1)//2)+1))
    flatten([[A236843(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 13 2022
    

Formula

G.f. for the column k (with zeros omitted): C(x)^A032766(k+1) where C(x) is g.f. for Catalan numbers (A000108).
Sum_{k=0..n} T(n,k) = A109262(n+1).
Sum_{k=0..n} T(n+k,2k) = A026726(n).
Sum_{k=0..n} T(n+1+k,2k+1) = A026674(n+1).
T(n, k) = (1/4)*(6*k + 5 - (-1)^k)*(2*n - floor(k/2))!/((n-k)!*(n + floor((k+1)/2) + 1)!). - G. C. Greubel, Jun 13 2022

A307495 Expansion of Sum_{k>=0} k!*((1 - sqrt(1 - 4*x))/2)^k.

Original entry on oeis.org

1, 1, 3, 12, 57, 312, 1950, 13848, 111069, 998064, 9957186, 109305240, 1309637274, 17006109072, 237888664572, 3566114897520, 57030565449765, 969154436550240, 17439499379433690, 331268545604793240, 6624013560942038670, 139080391965533653200, 3059323407592802838180, 70355685298375014175440
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2019

Keywords

Comments

Catalan transform of A000142 (factorial numbers).
From Peter Bala, Jan 27 2020: (Start)
This sequence is the main diagonal of the lower triangular array formed by putting the sequence of factorial numbers in the first column (k = 0) of the array and then completing the triangle using the relation T(n,k) = T(n-1,k) + T(n,k-1) for k >= 1.
1
1 1
2 3 3
6 9 12 12
24 33 45 57 57
120 153 198 255 312 312
...
Alternatively, the sequence can be obtained by multiplying the sequence of factorial numbers by the array A106566.
(End)

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Sum[k! ((1 - Sqrt[1 - 4 x])/2)^k, {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 23; CoefficientList[Series[1/(1 + ContinuedFractionK[-Floor[(k + 1)/2] (1 - Sqrt[1 - 4 x])/2, 1, {k, 1, nmax}]), {x, 0, nmax}], x]
    Join[{1}, Table[1/n Sum[Binomial[2n - k - 1, n - k] k k!, {k, n}], {n, 23}]]

Formula

G.f.: 1 /(1 - x*c(x)/(1 - x*c(x)/(1 - 2*x*c(x)/(1 - 2*x*c(x)/(1 - 3*x*c(x)/(1 - 3*x*c(x)/(1 - ...))))))), a continued fraction, where c(x) = g.f. of Catalan numbers (A000108).
Sum_{n>=0} a(n)*(x*(1 - x))^n = g.f. of A000142.
a(n) = (1/n) * Sum_{k=1..n} binomial(2*n-k-1,n-k)*k*k! for n > 0.
a(n) ~ exp(1) * n!. - Vaclav Kotesovec, Aug 10 2019

A130655 Catalan transform of Catalan numbers C(n+1).

Original entry on oeis.org

1, 2, 7, 28, 119, 524, 2363, 10844, 50446, 237280, 1126437, 5389916, 25967972, 125868952, 613385075, 3003586196, 14771851093, 72936101780, 361419276386, 1796837068400, 8960207761500
Offset: 0

Views

Author

Philippe Deléham, Jun 21 2007

Keywords

Crossrefs

Programs

  • Maple
    A130655 := proc(n)
        add(A106566(n,k)*A000108(k+1),k=0..n) ;
    end proc: # R. J. Mathar, Mar 01 2015
  • Mathematica
    CoefficientList[Series[2/(Sqrt[-1 + 2*Sqrt[1-4*x]] + Sqrt[1-4*x]),{x,0,20}],x] (* Vaclav Kotesovec, Jul 02 2015 *)
  • PARI
    x='x+O('x^50); Vec(2/(sqrt(-1 + 2*sqrt(1-4*x)) + sqrt(1-4*x))) \\ G. C. Greubel, Mar 21 2017

Formula

a(n) = Sum_{k=0..n} A106566(n,k)*A000108(k+1).
Conjecture: 3*n*(n-2)*(n+2)*a(n) +4*(-10*n^3+21*n^2+7*n-15)*a(n-1) +16*(11*n^3-47*n^2+57*n-15)*a(n-2) -8*(2*n-5)*(4*n-9)*(4*n-7)*a(n-3)=0. - R. J. Mathar, Mar 01 2015
G.f.: (C(x*C(x))-1)/(x*C(x)), where C(x) is g.f. of Catalan numbers A000108. - Vladimir Kruchinin, Jul 02 2015
a(n) ~ 2^(4*n+3/2) / (sqrt(Pi) * n^(3/2) * 3^(n-1/2)). - Vaclav Kotesovec, Jul 02 2015
Previous Showing 51-58 of 58 results.