cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 574 results. Next

A107218 Primes of the form 4x^2 + 25y^2.

Original entry on oeis.org

29, 41, 61, 89, 229, 241, 281, 349, 421, 509, 601, 641, 661, 701, 709, 769, 809, 821, 881, 1009, 1049, 1109, 1181, 1201, 1229, 1249, 1289, 1301, 1321, 1381, 1409, 1481, 1549, 1669, 1709, 1789, 1801, 1901, 2029, 2069, 2089, 2141, 2161, 2221, 2281
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -400. See A107132 for more information.

Programs

  • Mathematica
    QuadPrimes2[4, 0, 25, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\4), w=4*x^2; for(y=1, sqrtint((lim-w)\25), if(isprime(t=w+25*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 10 2017

A107219 Primes of the form x^2 + 100y^2.

Original entry on oeis.org

101, 109, 149, 181, 269, 389, 401, 409, 449, 461, 521, 541, 569, 761, 829, 929, 941, 1021, 1061, 1069, 1129, 1361, 1429, 1489, 1601, 1609, 1621, 1721, 1741, 1861, 1889, 1949, 2081, 2129, 2269, 2309, 2441, 2549, 2609, 2621, 2689, 2749, 2789
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -400. See A107132 for more information.

Programs

  • Mathematica
    QuadPrimes2[1, 0, 100, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\1), w=x^2; for(y=1, sqrtint((lim-w)\100), if(isprime(t=w+100*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 10 2017

A107628 Number of integral quadratic forms ax^2 + bxy + cy^2 whose discriminant b^2-4ac is -n, 0 <= b <= a <= c and gcd(a,b,c) = 1.

Original entry on oeis.org

0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 0, 1, 2, 0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 3, 2, 0, 0, 1, 2, 0, 0, 3, 2, 0, 0, 2, 2, 0, 0, 3, 3, 0, 0, 2, 2, 0, 0, 3, 2, 0, 0, 1, 3, 0, 0, 4, 2, 0, 0, 2, 2, 0, 0, 3, 3, 0, 0, 2, 4, 0, 0, 4, 2, 0, 0, 2, 2, 0, 0, 5, 4, 0, 0, 2, 2, 0, 0, 3, 4, 0
Offset: 1

Views

Author

T. D. Noe, May 18 2005, Apr 30 2008

Keywords

Comments

This sequence is closely related to the class number function, h(-n), which is given for fundamental discriminants in A006641. For a fundamental discriminant d, we have h(-d) < 2a(d). It appears that a(n) < Sqrt(n) for all n. For k>1, the primes p for which a(p)=k coincide with the numbers n such that the class number h(-n) is 2k-1 (see A006203, A046002, A046004, A046006. A046008, A046010, A046012, A046014, A046016 A046018, A046020). - T. D. Noe, May 07 2008

Examples

			a(15)=2 because the forms x^2 + xy + 4y^2 and 2x^2 + xy + 2y^2 have discriminant -15.
		

References

Crossrefs

Cf. A106856 (start of many quadratic forms).
Cf. A133675 (n such that a(n)=1).
Cf. A223708 (without zeros).

Programs

  • Mathematica
    dLim=150; cnt=Table[0, {dLim}]; nn=Ceiling[dLim/4]; Do[d=b^2-4a*c; If[GCD[a, b, c]==1 && 0<-d<=dLim, cnt[[ -d]]++ ], {b, 0, nn}, {a, b, nn}, {c, a, nn}]; cnt
  • PARI
    {a(n)=local(m); if(n<3, 0, forvec(v=vector(3,k,[0,(n+1)\4]), if( (gcd(v)==1)&(-v[1]^2+4*v[2]*v[3]==n), m++ ), 1); m)} /* Michael Somos, May 31 2005 */

A139644 Primes of the form x^2 + 105*y^2.

Original entry on oeis.org

109, 421, 541, 709, 1009, 1129, 1201, 1381, 1429, 1549, 1621, 1789, 1801, 2221, 2269, 2389, 2521, 2689, 3049, 3061, 3109, 3229, 3301, 3361, 3469, 3529, 3889, 4201, 4561, 4621, 4729, 4789, 4909, 5209, 5569, 5581, 5749, 5821, 5881, 6301
Offset: 1

Views

Author

T. D. Noe, Apr 29 2008

Keywords

Comments

Discriminant=-420. See A139643 for more information.
The primes are congruent to {1, 109, 121, 169, 289, 361} (mod 420).

Programs

  • Magma
    [ p: p in PrimesUpTo(7000) | p mod 420 in {1, 109, 121, 169, 289, 361}]; // Vincenzo Librandi, Jul 28 2012
    
  • Magma
    k:=105; [p: p in PrimesUpTo(7000) | NormEquation(k, p) eq true]; // Bruno Berselli, Jun 01 2016
  • Mathematica
    QuadPrimes2[1, 0, 105, 10000] (* see A106856 *)

A139645 Primes of the form x^2 + 112*y^2.

Original entry on oeis.org

113, 137, 193, 233, 281, 337, 401, 449, 457, 569, 617, 641, 673, 809, 953, 977, 1009, 1033, 1129, 1201, 1289, 1297, 1409, 1481, 1801, 1873, 1913, 2017, 2081, 2129, 2137, 2153, 2297, 2377, 2417, 2473, 2521, 2633, 2657, 2689, 2713, 2753, 2801
Offset: 1

Views

Author

T. D. Noe, Apr 29 2008

Keywords

Comments

Discriminant is -448. See A139643 for more information.
Primes of the form 8*n + 1 which cannot be expressed as 7*k - 1, 7*k - 2, or 7*k - 4. a(n)^3 == 1 (mod 56). - Gary Detlefs, Jan 26 2014
The primes are congruent to {1, 9, 25} (mod 56).

Programs

  • Magma
    [ p: p in PrimesUpTo(3000) | p mod 56 in {1, 9, 25}]; // Vincenzo Librandi, Jul 28 2012
    
  • Magma
    k:=112; [p: p in PrimesUpTo(3000) | NormEquation(k, p) eq true]; // Bruno Berselli, Jun 01 2016
  • Maple
    f:=n-> ceil((8*n+1)/7)-(8*n+1): for n from 1 to 350 do if isprime(8*n+1) and f(n)<>1 and f(n)<>2 and f(n)<>4 then print(8*n+1) fi od. # Gary Detlefs, Jan 26 2014
  • Mathematica
    QuadPrimes2[1, 0, 112, 10000] (* see A106856 *)

A139646 Primes of the form x^2 + 130*y^2.

Original entry on oeis.org

131, 139, 179, 211, 251, 419, 491, 521, 569, 571, 601, 641, 659, 809, 859, 881, 971, 1049, 1091, 1171, 1249, 1291, 1361, 1459, 1481, 1499, 1531, 1609, 1699, 1811, 1889, 1979, 2011, 2081, 2089, 2129, 2131, 2161, 2339, 2441, 2521, 2531, 2539
Offset: 1

Views

Author

T. D. Noe, Apr 29 2008

Keywords

Comments

Discriminant=-520. See A139643 for more information.
The primes are congruent to {1, 9, 49, 51, 81, 121, 129, 131, 139, 179, 209, 211, 251, 259, 289, 321, 329, 339, 361, 419, 441, 451, 459, 491} (mod 520).

Programs

  • Magma
    [ p: p in PrimesUpTo(3000) | p mod 520 in {1, 9, 49, 51, 81, 121, 129, 131, 139, 179, 209, 211, 251, 259, 289, 321, 329, 339, 361, 419, 441, 451, 459, 491}]; // Vincenzo Librandi, Jul 28 2012
    
  • Magma
    k:=130; [p: p in PrimesUpTo(3000) | NormEquation(k, p) eq true]; // Bruno Berselli, Jun 01 2016
  • Mathematica
    QuadPrimes2[1, 0, 130, 10000] (* see A106856 *)

A139647 Primes of the form x^2 + 133*y^2.

Original entry on oeis.org

137, 149, 197, 233, 277, 389, 457, 541, 557, 613, 617, 653, 701, 709, 757, 809, 821, 1033, 1061, 1201, 1213, 1289, 1297, 1373, 1429, 1453, 1493, 1597, 1621, 1733, 1873, 1901, 2053, 2069, 2129, 2137, 2153, 2213, 2221, 2297, 2381, 2417, 2437
Offset: 1

Views

Author

T. D. Noe, Apr 29 2008

Keywords

Comments

Discriminant=-532. See A139643 for more information.
The primes are congruent to {1, 9, 25, 81, 85, 93, 121, 137, 149, 169, 177, 197, 225, 233, 253, 277, 289, 305, 309, 365, 389, 429, 457, 473, 501, 505, 529} (mod 532).

Programs

  • Magma
    [ p: p in PrimesUpTo(3000) | p mod 532 in {1, 9, 25, 81, 85, 93, 121, 137, 149, 169, 177, 197, 225, 233, 253, 277, 289, 305, 309, 365, 389, 429, 457, 473, 501, 505, 529}]; // Vincenzo Librandi, Jul 28 2012
    
  • Magma
    k:=133; [p: p in PrimesUpTo(3000) | NormEquation(k, p) eq true]; // Bruno Berselli, Jun 01 2016
  • Mathematica
    QuadPrimes2[1, 0, 133, 10000] (* see A106856 *)

A139648 Primes of the form x^2 + 165*y^2.

Original entry on oeis.org

181, 229, 421, 661, 709, 829, 1021, 1321, 1489, 1549, 1609, 1621, 1741, 2029, 2161, 2269, 2281, 2341, 2689, 3001, 3061, 3169, 3301, 3469, 3529, 4129, 4261, 4621, 4789, 4801, 4909, 5281, 5449, 5569, 5581, 5641, 5701, 6121, 6229, 6301, 6361
Offset: 1

Views

Author

T. D. Noe, Apr 29 2008

Keywords

Comments

Discriminant = -660.
The primes are congruent to {1, 49, 169, 181, 229, 289, 301, 361, 421, 529} (mod 660).

Programs

  • Magma
    [ p: p in PrimesUpTo(7000) | p mod 660 in {1, 49, 169, 181, 229, 289, 301, 361, 421, 529}]; // Vincenzo Librandi, Jul 28 2012
    
  • Magma
    k:=165; [p: p in PrimesUpTo(7000) | NormEquation(k, p) eq true]; // Bruno Berselli, Jun 01 2016
  • Mathematica
    QuadPrimes2[1, 0, 165, 10000] (* see A106856 *)

A139649 Primes of the form x^2 + 177*y^2.

Original entry on oeis.org

181, 193, 241, 277, 373, 433, 577, 661, 709, 733, 757, 829, 853, 877, 997, 1069, 1201, 1237, 1549, 1597, 1609, 1621, 1657, 1669, 1693, 1777, 1789, 1933, 1993, 2113, 2269, 2293, 2377, 2389, 2557, 2617, 2677, 2749, 2833, 2857, 2917, 2953
Offset: 1

Views

Author

T. D. Noe, Apr 29 2008

Keywords

Comments

Discriminant = -708.
The primes are congruent to {1, 25, 49, 85, 121, 133, 145, 169, 181, 193, 205, 241, 253, 265, 277, 289, 361, 373, 433, 481, 493, 517, 529, 553, 577, 625, 661, 685, 697} (mod 708).

Programs

  • Magma
    [ p: p in PrimesUpTo(4000) | p mod 708 in {1, 25, 49, 85, 121, 133, 145, 169, 181, 193, 205, 241, 253, 265, 277, 289, 361, 373, 433, 481, 493, 517, 529, 553, 577, 625, 661, 685, 697}]; // Vincenzo Librandi, Jul 28 2012
    
  • Magma
    k:=177; [p: p in PrimesUpTo(3000) | NormEquation(k, p) eq true]; // Bruno Berselli, Jun 01 2016
  • Mathematica
    QuadPrimes2[1, 0, 177, 10000] (* see A106856 *)

A139650 Primes of the form x^2 + 190*y^2.

Original entry on oeis.org

191, 199, 239, 271, 311, 359, 479, 631, 719, 761, 769, 809, 881, 919, 929, 1031, 1049, 1151, 1201, 1279, 1289, 1489, 1559, 1601, 1721, 1759, 1831, 1871, 1879, 1999, 2039, 2129, 2239, 2281, 2399, 2441, 2551, 2591, 2609, 2671, 2791, 2969
Offset: 1

Views

Author

T. D. Noe, Apr 29 2008

Keywords

Comments

Discriminant = -760.
The primes are congruent to {1, 9, 39, 49, 81, 111, 119, 121, 159, 161, 169, 191, 199, 201, 239, 271, 289, 311, 321, 329, 351, 359, 391, 441, 479, 481, 511, 519, 529, 609, 631, 671, 681, 689, 719, 729} (mod 760).

Programs

  • Magma
    k:=190; [p: p in PrimesUpTo(3000) | NormEquation(k, p) eq true]; // Bruno Berselli, Jun 01 2016
  • Mathematica
    QuadPrimes2[1, 0, 190, 10000] (* see A106856 *)
Previous Showing 71-80 of 574 results. Next