cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A003463 a(n) = (5^n - 1)/4.

Original entry on oeis.org

0, 1, 6, 31, 156, 781, 3906, 19531, 97656, 488281, 2441406, 12207031, 61035156, 305175781, 1525878906, 7629394531, 38146972656, 190734863281, 953674316406, 4768371582031, 23841857910156, 119209289550781, 596046447753906, 2980232238769531
Offset: 0

Views

Author

Keywords

Comments

5^a(n) is the highest power of 5 dividing (5^n)!. - Benoit Cloitre, Feb 04 2002
n such that A002294(n) is not divisible by 5. - Benoit Cloitre, Jan 14 2003
Without leading zero, i.e., sequence {a(n+1) = (5*5^n-1)/4}, this is the binomial transform of A003947. - Paul Barry, May 19 2003 [Edited by M. F. Hasler, Oct 31 2014]
Numbers n such that a(n) is prime are listed in A004061(n) = {3, 7, 11, 13, 47, 127, 149, 181, 619, 929, ...}. Corresponding primes a(n) are listed in A086122(n) = {31, 19531, 12207031, 305175781, 177635683940025046467781066894531, ...}. 3^(m+1) divides a(2*3^m*k). 31 divides a(3k). 13 divides a(4k). 11 divides a(5k). 71 divides a(5k). 7 divides a(6k). 19531 divides a(7k). 313 divides a(8k). 19 divides a(9k). 829 divides a(9k). 71 divides a(10k). 521 divides a(10k). 17 divides a(16k). p divides a(p-1) for all prime p except p = {2,5}. p^(m+1) divides a(p^m*(p-1)) for all prime p except p = {2,5}. p divides a((p-1)/2) for prime p = {11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101, 109, ...} = A045468, Primes congruent to {1, 4} mod 5. p divides a((p-1)/3) for prime p = {13, 67, 127, 163, 181, 199, 211, 241, 313, 337, 367, 379, 409, 457, ...}. p divides a((p-1)/4) for prime p = {101, 109, 149, 181, 269, 389, 401, 409, 449, 461, 521, 541, ...} = A107219, Primes of the form x^2+100y^2. p divides a((p-1)/5) for prime p = {31, 191, 251, 271, 601, 641, 761, 1091, 1861, ...}. p divides a((p-1)/6) for prime p = {181, 199, 211, 241, 379, 409, 631, 691, 739, 769, 1039, ...}. - Alexander Adamchuk, Jan 23 2007
Starting with 1 = convolution square of A026375: (1, 3, 11, 45, 195, 873, ...). - Gary W. Adamson, May 17 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=5, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Jan 27 2010
This is the sequence A(0,1;4,5;2) = A(0,1;6,-5;0) of the family of sequences [a,b:c,d:k] considered by Gary Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
It is the Lucas sequence U(6,5). - Felix P. Muga II, Mar 21 2014
a(2*n+1) is the sum of the numerators and denominators of the reduced fractions 0 < b/5^n < 1 plus 1, with b < 5^n. - J. M. Bergot, Jul 24 2015
The sequence multiplied by 10 (0, 10, 60, 310, 1560, ...) is the maximum number of coins which can be decided by n weighings on 2 balances in the counterfeit coin problem with undecided under/overweight. [Halbeisen and Hungerbuhler, Disc. Math. 147 (1995) 139 Theorem 1]. - R. J. Mathar, Sep 10 2015
Order of the rank-n projective geometry PG(n-1,5) over the finite field GF(5). - Anthony Hernandez, Oct 05 2016
Number of zeros in the substitution system {0 -> 11100, 1 -> 11110} at step n from initial string "1" (1 -> 11110 -> 1111011110111101111011100 -> ...). - Ilya Gutkovskiy, Apr 10 2017
a(n) is the numerator of Sum_{k=1..n} 1/5^k, which approaches a limit of 1/4. The denominators are 5^n. In general, Sum_{k=1..n} 1/x^k approaches a limit of 1/(x-1). It is of interest to note that as x increases, so does the rate of convergence. See Crossrefs for numerators for other values of x which have the general form (x^n-1)/(x-1). - Gary Detlefs, Aug 31 2021

Examples

			Base 5...........decimal
0......................0
1......................1
11.....................6
111...................31
1111.................156
11111................781
111111..............3906
1111111............19531
11111111...........97656
111111111.........488281
1111111111.......2441406
etc. ...............etc.
- _Zerinvary Lajos_, Jan 14 2007
		

References

  • Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 282.

Crossrefs

Programs

Formula

Second binomial transform of A015518; binomial transform of A000302 (preceded by 0). - Paul Barry, Mar 28 2003
a(n) = Sum_{k=1..n} binomial(n,k)*4^(k-1). - Paul Barry, Mar 28 2003
a(n) = (-1)^n times the (i, j)-th element of M^n (for all i and j such that i is not equal to j), where M = ((1, -1, 1, -2), (-1, 1, -2, 1), (1, -2, 1, -1), (-2, 1, -1, 1)). - Simone Severini, Nov 25 2004
a(n) = A125118(n,4) for n>3. - Reinhard Zumkeller, Nov 21 2006
a(n) = ((3+sqrt(4))^n - (3-sqrt(4))^n)/4. - Al Hakanson (hawkuu(AT)gmail.com), Dec 31 2008
a(n) = 6*a(n-1) - 5*a(n-2) n>1, a(0)=0, a(1)=1. - Philippe Deléham, Jan 01 2009
From Wolfdieter Lang, Oct 18 2010: (Start)
O.g.f.: x/((1-5*x)*(1-x)).
a(n) = 4*a(n-1) + 5*a(n-2) + 2, a(0)=0, a(1)=1.
a(n) = 5*a(n-1) + a(n-2) - 5*a(n-3) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3), a(0)=0, a(1)=1, a(2)=6. Observation by G. Detlefs. See the W. Lang comment and link. (End)
a(n) = 5*a(n-1) + 1 with n>0, a(0)=0. - Vincenzo Librandi, Nov 17 2010
a(n) = a(n-1) + A000351(n-1) n>0, a(0)=0. - Felix P. Muga II, Mar 19 2014
a(n) = a(n-1) + 20*a(n-2) + 5 for n > 1, a(0)=0, a(1)=1. - Felix P. Muga II, Mar 19 2014
a(n) = A060458(n)/2^(n+2), for n > 0. - R. J. Cano, Sep 25 2014
From Ilya Gutkovskiy, Oct 05 2016: (Start)
E.g.f.: (exp(4*x) - 1)*exp(x)/4.
Convolution of A000351 and A057427. (End)

A107132 Primes of the form 2x^2 + 13y^2.

Original entry on oeis.org

2, 13, 31, 149, 167, 317, 359, 397, 463, 487, 509, 613, 661, 709, 839, 1061, 1087, 1103, 1151, 1181, 1367, 1471, 1783, 1789, 1861, 2039, 2111, 2221, 2269, 2437, 2503, 2621, 2647, 2917, 2927, 2957, 3023, 3079, 3167, 3229, 3373, 3541, 3853
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -104. Binary quadratic forms ax^2+cy^2 have discriminant d=-4ac. We consider sequences of primes produced by forms with -400<=d<=0, a<=c and gcd(a,c)=1. These restrictions yield 173 sequences of prime numbers, which are organized by discriminant below. See A106856 for primes of the form ax^2+bxy+cy^2 with discriminant > -100.

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 3, Chelsea, 1923.

Crossrefs

Cf. A033218 (d=-104), A014752 (d=-108), A107133, A107134 (d=-112), A033219 (d=-116), A107135-A107137, A033220 (d=-120), A033221 (d=-124), A105389 (d=-128), A107138, A033222 (d=-132), A107139, A033223 (d=-136), A107140, A033224 (d=-140), A107141, A107142 (d=-144), A033225 (d=-148), A107143, A033226 (d=-152), A033227 (d=-156), A107144, A107145 (d=-160), A033228 (d=-164), A107146-A107148, A033229 (d=-168).
Cf. A033230 (d=-172), A107149, A107150 (d=-176), A107151, A107152 (d=-180), A107153, A033231 (d=-184), A033232 (d=-188), A141373 (d=-192), A107155 (d=-196), A107156, A107157 (d=-200), A107158, A033233 (d=-204), A107159, A107160 (d=-208), A033234 (d=-212), A107161, A107162 (d=-216), A033235 (d=-220), A107163, A107164 (d=-224), A107165, A033236 (d=-228), A107166, A033237 (d=-232), A033238 (d=-236).
Cf. A107167-A107169 (d=-240), A033239 (d=-244), A107170, A033240 (d=-248), A014754 (d=-256), A107171, A033241 (d=-260), A107172-A107174, A033242 (d=-264), A033243 (d=-268), A107175, A107176 (d=-272), A107177, A033244 (d=-276), A107178-A107180, A033245 (d=-280), A033246 (d=-284), A107181 (d=-288), A033247 (d=-292), A107182, A033248 (d=-296), A107183, A107184 (d=-300), A107185, A107186 (d=-304), A107187, A033249 (d=-308).
Cf. A107188-A107190, A033250 (d=-312), A033251 (d=-316), A107191, A107192 (d=-320), A107193 (d=-324), A107194, A033252 (d=-328), A033253 (d=-332), A107195-A107198 (d=-336), A107199, A033254 (d=-340), A107200, A033255 (d=-344), A033256 (d=-348), A107132 A107201, A107202 (d=-352), A033257 (d=-356), A107203-A107206 (d=-360), A107207, A033258 (d=-364), A107208, A107209 (d=-368), A107210, A033202 (d=-372).
Cf. A107211, A033204 (d=-376), A033206 (d=-380), A107212, A107213 (d=-384), A033208 (d=-388), A107214, A107215 (d=-392), A107216, A107217 (d=-396), A107218, A107219 (d=-400).
For a more complete list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    QuadPrimes2[2, 0, 13, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List([2,13]),t); for(y=1,sqrtint(lim\13), for(x=1,sqrtint((lim-13*y^2)\2), if(isprime(t=2*x^2+13*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 07 2017
Showing 1-2 of 2 results.