cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A326270 E.g.f.: Sum_{n>=0} 2^n * (exp(n*x) - 1)^n / n!.

Original entry on oeis.org

1, 2, 18, 314, 8434, 314362, 15278642, 928696442, 68509258098, 5995762219514, 611538502747826, 71656036268121978, 9532232740451770866, 1425414297318661354746, 237588200534263288095538, 43821269448954050939558522, 8887255081413035850889914994, 1970841722610600810208914571258, 475544555000142351430865220032434, 124299766720856839788225909600114042, 35056463298676734373530025799446104818
Offset: 0

Views

Author

Paul D. Hanna, Jun 28 2019

Keywords

Comments

More generally, the following sums are equal:
Sum_{n>=0} (p + q^n)^n * r^n/n! =
Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = exp(x) with p = -1, r = 2.
In general, let F(x) be a formal power series in x such that F(0)=1, then
Sum_{n>=0} m^n * F(q^n*r)^b * log( F(q^n*r) )^n / n! =
Sum_{n>=0} r^n * [y^n] F(y)^(m*q^n + p);
here, F(x) = exp(x), q = exp(x), p = -1, r = 2, m = 1.

Examples

			E.g.f.: A(x) = 1 + 2*x + 18*x^2/2! + 314*x^3/3! + 8434*x^4/4! + 314362*x^5/5! + 15278642*x^6/6! + 928696442*x^7/7! + 68509258098*x^8/8! + 5995762219514*x^9/9! + 611538502747826*x^10/10! + ...
such that
A(x) = 1 + 2*(exp(x) - 1) + 2^2*(exp(2*x) - 1)^2/2! + 2^3*(exp(3*x) - 1)^3/3! + 2^4*(exp(4*x) - 1)^4/4! + 2^5*(exp(5*x) - 1)^5/5! + 2^6*(exp(6*x) - 1)^6/6! + ...
also
A(x) = exp(-2) + 2*exp(x)*exp(-2*exp(x)) + 2^2*exp(4*x)*exp(-2*exp(2*x))/2! + 2^3*exp(9*x)*exp(-2*exp(3*x))/3! + 2^4*exp(16*x)*exp(-2*exp(4*x))/4! + 2^5*exp(25*x)*exp(-2*exp(5*x))/5! + 2^6*exp(36*x)*exp(-2*exp(6*x))/6! + ...
ORDINARY GENERATING FUNCTION.
O.g.f.: B(x) = 1 + 2*x + 18*x^2 + 314*x^3 + 8434*x^4 + 314362*x^5 + 15278642*x^6 + 928696442*x^7 + 68509258098*x^8 + 5995762219514*x^9 + ...
such that
B(x) = 1 + 2*x/(1-x) + 2^2*2^2*x^2/((1-2*x)*(1-4*x)) + 2^3*3^3*x^3/((1-3*x)*(1-6*x)*(1-9*x)) + 2^4*4^4*x^4/((1-4*x)*(1-8*x)*(1-12*x)*(1-16*x)) + 2^5*5^5*x^5/((1-5*x)*(1-10*x)*(1-15*x)*(1-20*x)*(1-25*x)) + ...
RELATED SERIES.
Below we illustrate the following identity at specific values of x:
Sum_{n>=0} 2^n * (exp(n*x) - 1)^n / n!  =  Sum_{n>=0} 2^n * exp(n^2*x) * exp( -2*exp(n*x) ) / n!.
(1) At x = -1, the following sums are equal
S1 = Sum_{n>=0} (-2)^n * (1 - exp(-n))^n / n!,
S1 = Sum_{n>=0} 2^n * exp(-n^2) * exp( -2*exp(-n) ) / n!,
where S1 = 0.51596189603321982013621912500044621350106513780391377129738...
(2) At x = -2, the following sums are equal
S2 = Sum_{n>=0} (-2)^n * (1 - exp(-2*n))^n / n!,
S2 = Sum_{n>=0} 2^n * exp(-2*n^2) * exp( -2*exp(-2*n) ) / n!,
where S2 = 0.34246794778612083304129071190905516612972983097016819355092...
(3) At x = -log(2), the following sums are equal
S3 = Sum_{n>=0} 2^(-n*(n-1)) * (2^n - 1)^n * (-1)^n / n!,
S3 = Sum_{n>=0} 2^(-n*(n-1)) * exp( -1/2^(n-1) ) / n!,
where S3 = 0.58106816860114387883649557314841837351794236167582918403231...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Sum[2^k * k^n * StirlingS2[n, k], {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Jul 09 2019 *)
  • PARI
    {a(n) = sum(k=0,n, 2^k * k^n * stirling(n,k,2) )}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* E.g.f.: Sum_{n>=0} 2^n * (exp(n*x) - 1)^n / n! */
    {a(n) = n! * polcoeff(sum(m=0, n, 2^m * (exp(m*x +x*O(x^n)) - 1)^m / m!), n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* O.g.f.: Sum_{n>=0} 2^n * n^n * x^n / Product_{k=1..n} (1 - n*k*x) */
    {a(n) = polcoeff(sum(m=0, n, 2^m * m^m * x^m / prod(k=1, m, 1-m*k*x +x*O(x^n))), n)}
    for(n=0,30,print1(a(n),", "))

Formula

E.g.f.: Sum_{n>=0} 2^n * (exp(n*x) - 1)^n / n!.
E.g.f.: Sum_{n>=0} 2^n * exp(n^2*x) * exp( -2*exp(n*x) ) / n!.
O.g.f.: Sum_{n>=0} 2^n * n^n * x^n / Product_{k=1..n} (1 - n*k*x).
a(n) = Sum_{k=0..n} 2^k * k^n * Stirling2(n,k).

A326271 E.g.f.: Sum_{n>=0} 3^n * (exp(n*x) - 1)^n / n!.

Original entry on oeis.org

1, 3, 39, 948, 34869, 1757163, 114320118, 9226773993, 897658726215, 103005144933870, 13705015429716807, 2085418048857405375, 358813807291982519184, 69146346672687725451039, 14803634157756603606592167, 3496440993213535696041009924, 905508769623362527769907535857, 255762146004426658313683324505247, 78413243604482526944814375388910526, 25983968388767783226046397856822603645
Offset: 0

Views

Author

Paul D. Hanna, Jun 28 2019

Keywords

Comments

More generally, the following sums are equal:
(1) Sum_{n>=0} (p + q^n)^n * r^n/n!,
(2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = exp(x) with p = -1, r = 3.
In general, let F(x) be a formal power series in x such that F(0)=1, then
Sum_{n>=0} m^n * F(q^n*r)^b * log( F(q^n*r) )^n / n! =
Sum_{n>=0} r^n * [y^n] F(y)^(m*q^n + p);
here, F(x) = exp(x), q = exp(x), p = -1, r = 3, m = 1.

Examples

			E.g.f.: A(x) = 1 + 3*x + 39*x^2/2! + 948*x^3/3! + 34869*x^4/4! + 1757163*x^5/5! + 114320118*x^6/6! + 9226773993*x^7/7! + 897658726215*x^8/8! + 103005144933870*x^9/9! + ...
such that
A(x) = 1 + 3*(exp(x) - 1) + 3^2*(exp(2*x) - 1)^2/2! + 3^3*(exp(3*x) - 1)^3/3! + 3^4*(exp(4*x) - 1)^4/4! + 3^5*(exp(5*x) - 1)^5/5! + 3^6*(exp(6*x) - 1)^6/6! + ...
also
A(x) = exp(-3) + 3*exp(x)*exp(-3*exp(x)) + 3^2*exp(4*x)*exp(-3*exp(2*x))/2! + 3^3*exp(9*x)*exp(-3*exp(3*x))/3! + 3^4*exp(16*x)*exp(-3*exp(4*x))/4! + 3^5*exp(25*x)*exp(-3*exp(5*x))/5! + 3^6*exp(36*x)*exp(-3*exp(6*x))/6! + ...
ORDINARY GENERATING FUNCTION.
O.g.f.: B(x) = 1 + 3*x + 39*x^2 + 948*x^3 + 34869*x^4 + 1757163*x^5 + 114320118*x^6 + 9226773993*x^7 + 897658726215*x^8 + 103005144933870*x^9 + ...
such that
B(x) = 1 + 3*x/(1-x) + 3^2*2^2*x^2/((1-2*x)*(1-4*x)) + 3^3*3^3*x^3/((1-3*x)*(1-6*x)*(1-9*x)) + 3^4*4^4*x^4/((1-4*x)*(1-8*x)*(1-12*x)*(1-16*x)) + 3^5*5^5*x^5/((1-5*x)*(1-10*x)*(1-15*x)*(1-20*x)*(1-25*x)) + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = sum(k=0, n, 3^k * k^n * stirling(n, k, 2) )}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* E.g.f.: Sum_{n>=0} 3^n * (exp(n*x) - 1)^n / n! */
    {a(n) = n! * polcoeff(sum(m=0, n, 3^m * (exp(m*x +x*O(x^n)) - 1)^m / m!), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* O.g.f.: Sum_{n>=0} 3^n * n^n * x^n / Product_{k=1..n} (1 - n*k*x) */
    {a(n) = polcoeff(sum(m=0, n, 3^m * m^m * x^m / prod(k=1, m, 1-m*k*x +x*O(x^n))), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

E.g.f.: Sum_{n>=0} 3^n * (exp(n*x) - 1)^n / n!.
E.g.f.: Sum_{n>=0} 3^n * exp(n^2*x) * exp( -3*exp(n*x) ) / n!.
O.g.f.: Sum_{n>=0} 3^n * n^n * x^n / Product_{k=1..n} (1 - n*k*x).
a(n) = Sum_{k=0..n} 3^k * k^n * Stirling2(n,k).

A326288 E.g.f.: Sum_{n>=0} 4^n * (exp(n*x) - 1)^n / n!.

Original entry on oeis.org

1, 4, 68, 2116, 98436, 6217924, 503491204, 50282169284, 6023071906180, 847321700204740, 137695169475601540, 25505309294030757316, 5326002105122774427524, 1242268006104279981404868, 321107726934189274515747460, 91359880704866957348006879172, 28441686041231472428045000672644, 9637951929231839144943126955386052, 3538621024404268912313596289954242692, 1401869934089183216934147248975602680260
Offset: 0

Views

Author

Paul D. Hanna, Jun 28 2019

Keywords

Comments

More generally, the following sums are equal:
(1) Sum_{n>=0} (p + q^n)^n * r^n/n!,
(2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = exp(x) with p = -1, r = 4.
In general, let F(x) be a formal power series in x such that F(0)=1, then
Sum_{n>=0} m^n * F(q^n*r)^b * log( F(q^n*r) )^n / n! =
Sum_{n>=0} r^n * [y^n] F(y)^(m*q^n + p);
here, F(x) = exp(x), q = exp(x), p = -1, r = 4, m = 1.

Examples

			E.g.f.: A(x) = 1 + 4*x + 68*x^2/2! + 2116*x^3/3! + 98436*x^4/4! + 6217924*x^5/5! + 503491204*x^6/6! + 50282169284*x^7/7! + 6023071906180*x^8/8! + 847321700204740*x^9/9! + ...
such that
A(x) = 1 + 4*(exp(x) - 1) + 4^2*(exp(2*x) - 1)^2/2! + 4^3*(exp(3*x) - 1)^3/3! + 4^4*(exp(4*x) - 1)^4/4! + 4^5*(exp(5*x) - 1)^5/5! + 4^6*(exp(6*x) - 1)^6/6! + ...
also
A(x) = exp(-4) + 4*exp(x)*exp(-4*exp(x)) + 4^2*exp(4*x)*exp(-4*exp(2*x))/2! + 4^3*exp(9*x)*exp(-4*exp(3*x))/3! + 4^4*exp(16*x)*exp(-4*exp(4*x))/4! + 4^5*exp(25*x)*exp(-4*exp(5*x))/5! + 4^6*exp(36*x)*exp(-4*exp(6*x))/6! + ...
ORDINARY GENERATING FUNCTION.
O.g.f.: B(x) = 1 + 4*x + 68*x^2 + 2116*x^3 + 98436*x^4 + 6217924*x^5 + 503491204*x^6 + 50282169284*x^7 + 6023071906180*x^8 + 847321700204740*x^9 + ...
such that
B(x) = 1 + 4*x/(1-x) + 4^2*2^2*x^2/((1-2*x)*(1-4*x)) + 4^3*3^3*x^3/((1-3*x)*(1-6*x)*(1-9*x)) + 4^4*4^4*x^4/((1-4*x)*(1-8*x)*(1-12*x)*(1-16*x)) + 4^5*5^5*x^5/((1-5*x)*(1-10*x)*(1-15*x)*(1-20*x)*(1-25*x)) + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = sum(k=0, n, 4^k * k^n * stirling(n, k, 2) )}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* E.g.f.: Sum_{n>=0} 4^n * (exp(n*x) - 1)^n / n! */
    {a(n) = n! * polcoeff(sum(m=0, n, 4^m * (exp(m*x +x*O(x^n)) - 1)^m / m!), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* O.g.f.: Sum_{n>=0} 4^n * n^n * x^n / Product_{k=1..n} (1 - n*k*x) */
    {a(n) = polcoeff(sum(m=0, n, 4^m * m^m * x^m / prod(k=1, m, 1-m*k*x +x*O(x^n))), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

E.g.f.: Sum_{n>=0} 4^n * (exp(n*x) - 1)^n / n!.
E.g.f.: Sum_{n>=0} 4^n * exp(n^2*x) * exp( -4*exp(n*x) ) / n!.
O.g.f.: Sum_{n>=0} 4^n * n^n * x^n / Product_{k=1..n} (1 - n*k*x).
a(n) = Sum_{k=0..n} 4^k * k^n * Stirling2(n,k).

A350722 a(n) = Sum_{k=0..n} k! * k^(k+n) * Stirling2(n,k).

Original entry on oeis.org

1, 1, 33, 4567, 1652493, 1235777551, 1656820330173, 3619858882041487, 12034209740498292093, 57813156798714532953391, 385490564193781368103929213, 3454086424032897924417605526607, 40500898779980258599522326286912893
Offset: 0

Views

Author

Seiichi Manyama, Feb 03 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[k! * k^(k+n) * StirlingS2[n, k], {k, 1, n}]; Array[a, 13, 0] (* Amiram Eldar, Feb 03 2022 *)
  • PARI
    a(n) = sum(k=0, n, k!*k^(k+n)*stirling(n, k, 2));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*(exp(k*x)-1))^k)))

Formula

E.g.f.: Sum_{k>=0} (k * (exp(k*x) - 1))^k.
a(n) ~ exp(exp(-2)/2) * n! * n^(2*n). - Vaclav Kotesovec, Feb 04 2022

A108458 Triangle read by rows: T(n,k) is the number of set partitions of {1,2,...,n} in which the last block is the singleton {k}, 1<=k<=n; the blocks are ordered with increasing least elements.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 3, 5, 0, 1, 5, 10, 15, 0, 1, 9, 22, 37, 52, 0, 1, 17, 52, 99, 151, 203, 0, 1, 33, 130, 283, 471, 674, 877, 0, 1, 65, 340, 855, 1561, 2386, 3263, 4140, 0, 1, 129, 922, 2707, 5451, 8930, 12867, 17007, 21147, 0, 1, 257, 2572, 8919, 19921, 35098, 53411, 73681, 94828, 115975
Offset: 1

Views

Author

Christian G. Bower, Jun 03 2005; Emeric Deutsch, Nov 14 2006

Keywords

Comments

Another way to obtain this sequence (with offset 0): Form the infinite array U(n,k) = number of labeled partitions of (n,k) into pairs (i,j), for n >= 0, k >= 0 and read it by antidiagonals. In other words, U(n,k) = number of partitions of n black objects labeled 1..n and k white objects labeled 1..k. Each block must have at least one white object.
Then T(n,k)=U(n+k,k+1). Thus the two versions are related like "multichoose" to "choose". - Augustine O. Munagi, Jul 16 2007

Examples

			Triangle T(n,k) starts:
  1;
  0,1;
  0,1,2;
  0,1,3,5;
  0,1,5,10,15;
T(5,3)=5 because we have 1245|3, 145|2|3, 14|25|3, 15|24|3 and 1|245|3.
The arrays U(n,k) starts:
   1  0  0   0   0 ...
   1  1  1   1   1 ...
   2  3  5   9  17 ...
   5 10 22  52 130 ...
  15 37 99 283 855 ...
		

Crossrefs

Row sums of T(n, k) yield A124496(n, 1).
Cf. A108461.
Columns of U(n, k): A000110, A005493, A033452.
Rows of U(n, k): A000007, A000012, A000051.
Main diagonal: A108459.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[n == k, 1, i^(n-k)]*StirlingS2[k, i], {i, 0, k}];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 10 2024, after Vladeta Jovovic *)

Formula

T(n,1)=0 for n>=2; T(n,2)=1 for n>=2; T(n,3)=1+2^(n-3) for n>=3; T(n,n)=B(n-1), T(n,n-1)=B(n-1)-B(n-2), where B(q) are the Bell numbers (A000110).
Double e.g.f.: exp(exp(x)*(exp(y)-1)).
U(n,k) = Sum_{i=0..k} i^(n-k)*Stirling2(k,i). - Vladeta Jovovic, Jul 12 2007

Extensions

Edited by N. J. A. Sloane, May 22 2008, at the suggestion of Vladeta Jovovic. This entry is a composite of two entries submitted independently by Christian G. Bower and Emeric Deutsch, with additional comments from Augustine O. Munagi.

A128943 a(n) = Sum_{k=0..n} (-1)^(n-k)*k^n*Stirling1(n,k).

Original entry on oeis.org

1, 1, 5, 53, 924, 23494, 810872, 36194514, 2017775680, 136829739216, 11055586913832, 1046742607228152, 114550470343202880, 14323855468574034720, 2026669209500208676608, 321743057984308274403024, 56892680614922936544276480, 11133427829583046292676364800, 2397458024796587973818060252160
Offset: 0

Views

Author

Vladeta Jovovic, May 09 2007

Keywords

Crossrefs

Cf. A108459.

Programs

  • Maple
    with(combinat): a:=n->sum((-1)^(n-k)*k^n*stirling1(n,k),k=0..n): seq(a(n),n=0..18); # Emeric Deutsch, May 18 2007
  • Mathematica
    Table[Sum[Abs[StirlingS1[n+1,k+1]]StirlingS2[n,k]k!,{k,0,n}],{n,0,100}] (* Emanuele Munarini, Jul 04 2011 *)
    nmax = 20; CoefficientList[Series[1 + Sum[(-Log[1 - k*x])^k/k!, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 04 2022 *)
  • Maxima
    makelist(sum(abs(stirling1(n+1,k+1))*stirling2(n,k)*k!,k,0,n),n,0,24); /* Emanuele Munarini, Jul 04 2011 */

Formula

E.g.f.: Sum_{n>=0} (-log(1-n*x))^n/n!.
a(n) = Sum_{k=0..n} abs(Stirling1(n+1,k+1))*Stirling2(n,k)*k!. - Emanuele Munarini, Jul 04 2011

Extensions

More terms from Emeric Deutsch, May 18 2007

A198513 E.g.f.: Sum_{n>=0} sinh(n*x)^n/n!.

Original entry on oeis.org

1, 1, 4, 28, 320, 5556, 129600, 3756936, 132872192, 5679982288, 286769980416, 16732506817280, 1115928688967680, 84383735744758464, 7163164003950936064, 676619301019539271040, 70674282825174467215360, 8117559039240651749888256
Offset: 0

Views

Author

Paul D. Hanna, Oct 26 2011

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 4*x^2/2! + 28*x^3/3! + 320*x^4/4! + 5556*x^5/5! +...
where
A(x) = 1 + sinh(x) + sinh(2*x)^2/2! + sinh(3*x)^3/3! + sinh(4*x)^4/4! +...
		

Crossrefs

Cf. A108459.

Programs

  • PARI
    {a(n)=local(A=sum(m=0,n,sinh(m*x+x*O(x^n))^m/m!));n!*polcoeff(A,n)}

Formula

E.g.f.: Sum_{n>=0} exp(-n^2*x) * (exp(2*n*x) - 1)^n / (2^n*n!).

A367820 Number of partitions of [2n] that have at most one block contained in [n].

Original entry on oeis.org

1, 2, 13, 153, 2744, 68303, 2224417, 90995838, 4538437039, 269755223485, 18766884323562, 1506040068195721, 137740473851280141, 14212098473767962472, 1640078704487165930485, 210103319793655159244093, 29684467774817808296383256, 4598958815992575305097910699
Offset: 0

Views

Author

Alois P. Heinz, Dec 01 2023

Keywords

Examples

			a(2) = 13: 1234, 123|4, 124|3, 12|34, 12|3|4, 134|2, 13|24, 13|2|4, 14|23, 1|234, 1|23|4, 14|2|3, 1|24|3.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; expand(`if`(n=0, 1,
          x*add(b(n-j)*binomial(n-1, j-1), j=1..n)))
        end:
    a:= n-> add(coeff(b(n), x, j)*(j+1)^n, j=0..n):
    seq(a(n), n=0..21);
  • Mathematica
    A367820[n_]:=Sum[StirlingS2[n,j](j+1)^n,{j,0,n}];
    Array[A367820,25,0] (* Paolo Xausa, Dec 04 2023 *)

Formula

a(n) = A113547(2n+1,n+1) = A362925(2n,n).
a(n) = Sum_{j=0..n} (j+1)^n * Stirling2(n,j).
a(n) mod 2 = A011655(n+2).

A351181 a(n) = Sum_{k=0..n} k^(k+n) * Stirling2(n,k).

Original entry on oeis.org

1, 1, 17, 826, 79107, 12553011, 2979141058, 988163147091, 436562014218313, 247800100563125728, 175732698005376526429, 152264214647249387402567, 158273183995563848011907696, 194391589002961482387840145341
Offset: 0

Views

Author

Seiichi Manyama, Feb 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[k^(k + n) * StirlingS2[n, k], {k, 1, n}]; Array[a, 14, 0] (* Amiram Eldar, Feb 04 2022 *)
  • PARI
    a(n) = sum(k=0, n, k^(k+n)*stirling(n, k, 2));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*(exp(k*x)-1))^k/k!)))

Formula

E.g.f.: Sum_{k>=0} (k * (exp(k*x) - 1))^k / k!.
a(n) ~ c * r^(2*n) * (1 + exp(1 + 1/r))^n * n^(2*n) / exp(2*n), where r = 0.942405403803582963024019065398882138211529545249588032669864757847... is the root of the equation r*(1 + exp(-1 - 1/r)) * LambertW(-exp(-1/r)/r) = -1 and c = 0.94346979328254581112250921799629823027437848684764713214690470878402... - Vaclav Kotesovec, Feb 18 2022

A356772 E.g.f. A(x) satisfies: A(x) = Sum_{n>=0} ( x^n + x*A(x) )^n / n!.

Original entry on oeis.org

1, 2, 5, 34, 329, 3716, 55777, 1010206, 21187049, 511352272, 13929248861, 422450642054, 14129873671069, 516664310959720, 20503766568423881, 877759284120870526, 40321132468408643153, 1978363648482263649728, 103262474042895179595061, 5713315282015940379009862
Offset: 0

Views

Author

Paul D. Hanna, Aug 27 2022

Keywords

Comments

More generally, the following sums are equal:
(1) Sum_{n>=0} (p + q^n)^n * r^n/n!,
(2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = x with p = x*A(x), r = 1.

Examples

			E.g.f.: A(x) = 1 + 2*x + 5*x^2/2! + 34*x^3/3! + 329*x^4/4! + 3716*x^5/5! + 55777*x^6/6! + 1010206*x^7/7! + 21187049*x^8/8! + 511352272*x^9/9! + 13929248861*x^10/10! + ...
where
A(x) = 1 + (x + x*A(x)) + (x^2 + x*A(x))^2/2! + (x^3 + x*A(x))^3/3! + (x^4 + x*A(x))^4/4! + (x^5 + x*A(x))^5/5! + ... + (x^n + x*A(x))^n/n! + ...
also
A(x) = exp(x*A(x)) + x*exp(x^2*A(x)) + x^4*exp(x^3*A(x))/2! + x^9*exp(x^4*A(x))/3! + x^16*exp(x^5*A(x))/4! + x^25*exp(x^6*A(x))/5! + ... +  + x^(n^2)*exp(x^(n+1)*A(x))/n! + ...
RELATED SERIES.
exp(x*A(x)) = 1 + x + 5*x^2/2! + 28*x^3/3! + 269*x^4/4! + 3356*x^5/5! + 50257*x^6/6! + 915076*x^7/7! + 19427753*x^8/8! + 471310984*x^9/9! + 12892968701*x^10/10! + ...
log(A(x)) = 2*x + x^2/2! + 20*x^3/3! + 126*x^4/4! + 1314*x^5/5! + 20460*x^6/6! + 347906*x^7/7! + 7181944*x^8/8! + 170606106*x^9/9! + 4577504760*x^10/10! + ...
SPECIFIC VALUES.
A(x = 1/4) = 1.8854569251645435475372616427080...
A(x = 0.3) = 2.4910587821818158559566392662113...
A(x = 1/3) diverges.
		

Crossrefs

Programs

  • PARI
    /* A(x) = Sum_{n>=0} ( x^n + x*A(x) )^n / n! */
    {a(n) = my(A=1); for(i=1,n, A = sum(m=0,n, (x^m + x*A +x*O(x^n))^m/m! )); n!*polcoeff(A,n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* A(x) = Sum_{n>=0} x^(n^2) * exp(x^(n+1)*A(x))/n! */
    {a(n) = my(A=1); for(i=1,n, A = sum(m=0,sqrtint(n), x^(m^2) * exp( x^(m+1)*A +x*O(x^n)) / m! )); n!*polcoeff(A,n)}
    for(n=0,25,print1(a(n),", "))

Formula

E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies:
(1) A(x) = Sum_{n>=0} ( x^n + x*A(x) )^n / n!.
(2) A(x) = Sum_{n>=0} x^(n^2) * exp( x^(n+1) * A(x) ) / n!.
a(n) ~ c * d^n * n! / n^(3/2), where d = 3.14614463757985697... and c = 1.454175198420213... - Vaclav Kotesovec, Jul 03 2025
Previous Showing 11-20 of 21 results. Next