cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A134142 List of quadruples: 2*(-4)^n, -3*(-4)^n, 2*(-4^n), 2*(-4)^n, n >= 0.

Original entry on oeis.org

2, -3, 2, 2, -8, 12, -8, -8, 32, -48, 32, 32, -128, 192, -128, -128, 512, -768, 512, 512, -2048, 3072, -2048, -2048, 8192, -12288, 8192, 8192, -32768, 49152, -32768, -32768, 131072, -196608, 131072, 131072, -524288, 786432, -524288, -524288, 2097152, -3145728, 2097152, 2097152, -8388608
Offset: 0

Views

Author

Paul Curtz, Jan 29 2008

Keywords

Crossrefs

Programs

  • Maple
    A134142 := proc(n) (-4)^floor(n/4)*op(1+(n mod 4), [2,-3,2,2]) ; end: for n from 0 to 80 do printf("%d ",A134142(n)) ; od: # R. J. Mathar, Feb 05 2008

Formula

O.g.f.: (x+2)/(2*x^2+2*x+1). a(n) = 2*A108520(n)+A108520(n-1). - R. J. Mathar, Feb 05 2008
a(n) = (1 - I/2)*(-1 - I)^n + (1 + I/2)*(-1 + I)^n, n>=0. - Taras Goy, Apr 20 2019
a(n) = -2*a(n-1)-2*a(n-2) for n > 1. - Chai Wah Wu, May 19 2025
E.g.f.: exp(-x)*(2*cos(x) - sin(x)). - Stefano Spezia, May 19 2025

Extensions

More terms from R. J. Mathar, Feb 05 2008

A137429 a(n) = -2*a(n-1) - 2*a(n-2), with a(0)=1 and a(1)=-4.

Original entry on oeis.org

1, -4, 6, -4, -4, 16, -24, 16, 16, -64, 96, -64, -64, 256, -384, 256, 256, -1024, 1536, -1024, -1024, 4096, -6144, 4096, 4096, -16384, 24576, -16384, -16384, 65536, -98304, 65536, 65536, -262144, 393216, -262144, -262144, 1048576, -1572864, 1048576, 1048576, -4194304, 6291456
Offset: 0

Views

Author

Paul Curtz, Apr 17 2008

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-2,-2},{1,-4},50] (* Harvey P. Dale, Mar 26 2013 *)

Formula

For n >= 4, a(n) = -4*a(n-4).
a(n) = (-1)^n*A137444(n) = A108520(n) - 2*A108520(n-1).
G.f.: (1-2*x)/(1 + 2*x + 2*x^2).
a(n) = (1/2 + 3*i/2)*(-1 + i)^n + (1/2 - 3*i/2)*(-1 - i)^n, n >= 0, where i=sqrt(-1). - Taras Goy, Apr 20 2019

A138377 a(0) = 0, a(1) = 1, a(2) = 3, a(3) = 2; thereafter a(n) = -4*a(n-4).

Original entry on oeis.org

0, 1, 3, 2, 0, -4, -12, -8, 0, 16, 48, 32, 0, -64, -192, -128, 0, 256, 768, 512, 0, -1024, -3072, -2048, 0, 4096, 12288, 8192, 0, -16384, -49152, -32768, 0, 65536, 196608, 131072, 0, -262144, -786432, -524288, 0, 1048576, 3145728, 2097152, 0, -4194304, -12582912, -8388608, 0, 16777216, 50331648
Offset: 0

Views

Author

Paul Curtz, May 08 2008

Keywords

Comments

First and third differences have only 2^n's.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,-4},{0,1,3,2},60] (* Harvey P. Dale, Mar 19 2012 *)
  • PARI
    x='x+O('x^25); Vec(x*(1+x)*(2*x+1)/((1-2*x+2*x^2)*(1+2*x+2*x^2))) \\ G. C. Greubel, Feb 20 2017

Formula

From R. J. Mathar, May 09 2008: (Start)
O.g.f.: x*(1+x)*(2*x+1)/((1-2*x+2*x^2)*(1+2*x+2*x^2)).
a(n) = (5*A009545(n) - A108520(n))/4. (End)

A199324 Triangle T(n,k), read by rows, given by (-1,1,-1,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, -1, 1, 0, -1, 1, 1, -1, -1, 1, -1, 3, -2, -1, 1, 0, -2, 5, -3, -1, 1, 1, -2, -2, 7, -4, -1, 1, -1, 5, -7, -1, 9, -5, -1, 1, 0, -3, 12, -15, 1, 11, -6, -1, 1, 1, -3, -3, 21, -26, 4, 13, -7, -1, 1, -1, 7, -15, 3, 31, -40, 8, 15, -8, -1, 1, 0, -4, 22, -42
Offset: 0

Views

Author

Philippe Deléham, Nov 12 2011

Keywords

Examples

			Triangle begins :
1
-1, 1
0, -1, 1
1, -1, -1, 1
-1, 3, -2, -1, 1
0, -2, 5, -3, -1, 1
1, -2, -2, 7, -4, -1, 1
-1, 5, -7, -1, 9, -5, -1, 1
		

Crossrefs

Cf. A026729, A063967, A129267, A176971 (diagonals sums).

Formula

T(n,k)=T(n-1,k-1)+T(n-2,k-1)-T(n-1,k)-T(n-2,k), T(0,0)=1.
G.f.: 1/(1-(y-1)*x-(y-1)*x^2).
Sum_{k, 0<=k<=n}T(n,k)*x^k = A000748(n), A108520(n), A049347(n), A000007(n), A000045(n+1), A002605(n+1), A030195(n+1), A057087(n), A057088(n), A057089(n), A057090(n), A057091(n), A057092(n), A057093(n) for x = -2,-1,0,1,2,3,4,5,6,7,8,9,10,11 respectively.

A108086 Triangle, read by rows, where T(0,0) = 1, T(n,k) = (-1)^(n+k)*T(n-1,k) + T(n-1,k-1); a signed version of Pascal's triangle.

Original entry on oeis.org

1, -1, 1, -1, -2, 1, 1, -3, -3, 1, 1, 4, -6, -4, 1, -1, 5, 10, -10, -5, 1, -1, -6, 15, 20, -15, -6, 1, 1, -7, -21, 35, 35, -21, -7, 1, 1, 8, -28, -56, 70, 56, -28, -8, 1, -1, 9, 36, -84, -126, 126, 84, -36, -9, 1, -1, -10, 45, 120, -210, -252, 210, 120, -45, -10, 1, 1, -11, -55, 165, 330, -462, -462, 330, 165, -55, -11, 1
Offset: 0

Views

Author

Gerald McGarvey, Jun 05 2005

Keywords

Crossrefs

Programs

  • Magma
    A108086:= func< n,k | (-1)^Floor((n-k+1)/2)*Binomial(n,k) >;
    [A108086(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 02 2022
    
  • Mathematica
    A108086[n_, k_]:= (-1)^(Floor[(n-k+1)/2])*Binomial[n, k];
    Table[A108086[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 02 2022 *)
  • SageMath
    def A108086(n,k): return (-1)^int((n-k+1)/2)*binomial(n,k)
    flatten([[A108086(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Dec 02 2022

Formula

T(n,k) = (-1)^(n+k)*T(n-1,k) + T(n-1,k-1), with T(0, 0) = 1.
T(n, k) = (-1)^floor((n-k+1)/2) * A007318(n, k).
From G. C. Greubel, Dec 02 2022: (Start)
T(2*n, n) = (-1)^binomial(n+1,2) * A000984(n).
T(2*n, n+1) = (-1)^binomial(n,2) * A001791(n), n >= 1.
T(2*n, n-1) = (-1)^binomial(n+2,2) * A001791(n).
T(2*n+1, n-1) = (-1)^binomial(n-1,2) * A002054(n).
T(2*n+1, n+1) = (-1)^binomial(n+1,2) * A001700(n+1).
Sum_{k=0..n} T(n, k) = (-1)^n * A090132(n).
Sum_{k=0..n} (-1)^k * T(n, k) = A108520(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = (-1)^n * A260192(n-1).
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A333378(n+1). (End)

A130668 Diagonal of A129819.

Original entry on oeis.org

0, 0, 1, -2, 5, -11, 23, -48, 102, -220, 476, -1024, 2184, -4624, 9744, -20480, 42976, -90048, 188352, -393216, 819328, -1704192, 3539200, -7340032, 15203840, -31456256, 65010688, -134217728, 276826112, -570429440, 1174409216
Offset: 0

Views

Author

Paul Curtz, Jun 27 2007

Keywords

Comments

This sequence is connected to A124072. To see this, change the sign of every negative term and consider the differences of every line. Hence for the second line, and following lines, the four terms form periodic sequences:
0 1 0 1 0
1 0 0 1 1
1 0 1 2 1
1 1 3 3 1
2 4 6 4 2
6 10 10 6 6
16 20 16 12 16
36 36 28 28 36
72 64 56 64 72
136 120 120 136 136
256 240 256 272 256.
The lines are connected as seen by the examples: (3rd line connected to 2nd, from right to left) 1+1=2, 1+0=1, 0+0=0, 0+1=1; (11th line connected to 10th) 136+136=272, 136+120=256, 120+120=240, 120+136=256.
The 4 columns are almost known (must the first line be suppressed?): A038503 (without the first 1), A000749 (without the first 0), A038505, A038504. Like the present sequence, every sequence of A124072 beginning with a negative number (-2, -11, ...) is a "twisted" sequence (see A129339 comments, A129961 and the present 4 columns). Periodic with period 2^n.
Inverse binomial transform of A129819. - R. J. Mathar, Feb 25 2009

Programs

  • GAP
    a:=[-2,5,-11,23];; for n in [5..30] do a[n]:=-6*a[n-1]+-14*a[n-2] -16*a[n-3]-8*a[n-4]; od; Concatenation([0,0,1], a); # G. C. Greubel, Mar 24 2019
  • Magma
    I:=[-2,5,-11,23]; [0,0,1] cat [n le 4 select I[n] else -6*Self(n-1) - 14*Self(n-2)-16*Self(n-3)-8*Self(n-4): n in [1..30]]; // G. C. Greubel, Mar 24 2019
    
  • Mathematica
    gf = x^2*(1+x)*(1+3*x+4*x^2+3*x^3)/((1+2*x+2*x^2)*(1+2*x)^2); CoefficientList[Series[gf, {x, 0, 30}], x] (* Jean-François Alcover, Dec 16 2014, after R. J. Mathar *)
    Join[{0, 0, 1}, LinearRecurrence[{-6,-14,-16,-8}, {-2,5,-11,23}, 30]] (* Jean-François Alcover, Feb 15 2016 *)
  • PARI
    my(x='x+O('x^30)); concat([0,0], Vec(x^2*(1+x)*(1+3*x+4*x^2+3*x^3 )/((1+2*x +2*x^2)*(1+2*x)^2))) \\ G. C. Greubel, Mar 24 2019
    
  • Sage
    (x^2*(1+x)*(1+3*x+4*x^2+3*x^3)/((1+2*x+2*x^2)*(1+2*x)^2 )).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Mar 24 2019
    

Formula

From R. J. Mathar, Feb 25 2009: (Start)
G.f.: x^2*(1+x)*(1 + 3*x + 4*x^2 + 3*x^3)/((1 + 2*x + 2*x^2)*(1+2*x)^2).
a(n) = ((-1)^n*A001787(n+1) - 4*A108520(n) + 4*A122803(n))/32, n > 2. (End)
a(n) = -6*a(n-1) - 14*a(n-2) - 16*a(n-3) - 8*a(n-4) for n >= 7. - G. C. Greubel, Mar 24 2019

Extensions

Extended by R. J. Mathar, Feb 25 2009

A176739 Expansion of 1/(1-2*x^2-4*x^3). (2,4)-Padovan sequence.

Original entry on oeis.org

1, 0, 2, 4, 4, 16, 24, 48, 112, 192, 416, 832, 1600, 3328, 6528, 13056, 26368, 52224, 104960, 209920, 418816, 839680, 1677312, 3354624, 6713344, 13418496, 26845184, 53690368, 107364352, 214761472, 429490176, 858980352, 1718026240, 3435921408, 6871973888
Offset: 0

Views

Author

Wolfdieter Lang, Jul 14 2010

Keywords

Comments

See A000931 (Padovan), and the W. Lang link given there for a combinatorial interpretation and an explicit form.
a(n)/2^n equals the probability that n will occur as a partial sum in a randomly-generated infinite sequence of 2's and 3's. The limiting ratio is 2/5. - Bob Selcoe, Jul 12 2013

Examples

			Combinatorics for (A,B)=(2,4) Padovan sequence with weighted (3,2)-Morse type code (see the W. Lang link under A000931): n=5, - -- and -- -, with weights 2^1*4^1 and 4^1*2^1, respectively, adding to 2*2*4=16=a(5).
		

Crossrefs

Programs

  • Maple
    seq(2^(n+1)/5 + Re((3-I)*(-1-I)^n)/5, n=0..100); # Robert Israel, Aug 26 2014
  • Mathematica
    CoefficientList[Series[1/(1 - 2*x^2 - 4*x^3), {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 26 2014 *)

Formula

O.g.f.: 1/((1+2*x+2*x^2)*(1-2*x)) = ((3+2*x)/(1+2*x+2*x^2) + 2/(1-2*x))/5.
a(n) = (3*b(n) + 2*b(n-1) + 2^(n+1))/5, with b(n):=A108520(n), and b(-1)=0.
a(n) = 2*a(n-2) + 4*a(n-3). - Bob Selcoe, Aug 26 2014
a(n) = 2^(n+1)/5 + Re((3-i)*(-1-i)^n)/5. - Robert Israel, Aug 26 2014
5*a(n) = 2^(n+1) -A078069(n+1). - R. J. Mathar, May 14 2024

A229893 Expansion of q^2 * f(-q) * f(-q^4) * f(-q^16) * f(-q^2, -q^14) in powers of q where f() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, -2, 1, 0, 2, 2, -1, -2, -1, 2, -1, -2, 0, 0, 0, 1, 3, 2, -2, 2, -6, -4, 3, 0, 4, 0, 3, 2, 0, -4, 0, -2, -2, 0, -3, 0, 2, 0, 0, 4, -5, -2, 1, 6, 0, 4, 0, -3, 2, 2, 5, -8, 2, 4, -6, 0, 3, -4, -9, -8, 0, 8, 0, -2, -5, 4, 6, 0, 10, -2, 4, 6, -3, -6, 2, -2
Offset: 2

Views

Author

Michael Somos, Oct 02 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q^2 - q^3 - 2*q^4 + q^5 + 2*q^7 + 2*q^8 - q^9 - 2*q^10 - q^11 + ...
		

Crossrefs

Programs

  • Magma
    Basis( CuspForms( Gamma1(16), 2), 79)[2];
  • Mathematica
    a[ n_] := SeriesCoefficient[ q^2 QPochhammer[ q^2, q^16] QPochhammer[ q^14, q^16] QPochhammer[ q^16]^2 QPochhammer[ q] QPochhammer[ q^4], {q, 0, n}]
  • PARI
    {a(n) = local(A, m); if( n<2, 0, n-=2; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^16 + A) * sum( k=0, n\2, if( issquare( 16*k + 9, &m), (-1)^k * x^(2*k), 0), A), n))}
    
  • Sage
    CuspForms( Gamma1(16), 2, prec=79).1
    

Formula

Euler transform of period 16 sequence [-1, -2, -1, -2, -1, -1, -1, -2, -1, -1, -1, -2, -1, -2, -1, -4, ...].
a(2^n) = A108520(n-1). a(16*n + 1) = a(16*n + 15) = 0. -2 * a(n) = A229502(2*n). a(8*n) = 2 * A229502(n).

A143462 Expansion of 1/(1 + 4*x + 8*x^2).

Original entry on oeis.org

1, -4, 8, 0, -64, 256, -512, 0, 4096, -16384, 32768, 0, -262144, 1048576, -2097152, 0, 16777216, -67108864, 134217728, 0, -1073741824, 4294967296, -8589934592, 0, 68719476736, -274877906944, 549755813888, 0, -4398046511104, 17592186044416
Offset: 0

Views

Author

Michael Somos, Aug 16 2008

Keywords

Examples

			1 - 4*x + 8*x^2 - 64*x^4 + 256*x^5 - 512*x^6 + 4096*x^8 - 16384*x^9 + ...
		

Crossrefs

A030210(2^n) = 2^n * A108520(n) = a(n).

Programs

  • Magma
    I:=[1,-4]; [n le 2 select I[n] else -4 * Self(n-1) - 8 * Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 17 2015
  • Maple
    A143462 := n -> `if`(n=0, 1, (-4)^n*hypergeom([1/2-n/2, -n/2], [-n], 2)):
    seq(simplify(A143462(n)), n=0..29); # Peter Luschny, Dec 17 2015
  • Mathematica
    CoefficientList[Series[1/(1 + 4*x + 8*x^2), {x, 0, 30}], x] (* Jinyuan Wang, Mar 10 2020 *)
  • PARI
    {a(n) = (-64)^(n \ 4) * [1, -4, 8, 0][n%4 + 1]}
    
  • PARI
    {a(n) = n--; -2 * 2^n * ((-1 + I)^n + (-1 - I)^n)}
    
  • PARI
    {a(n) = n--; simplify( -4 * (2 * quadgen(8))^n * polchebyshev(n, 1, -1 / quadgen(8)))}
    

Formula

G.f.: 1/(1 + 4*x + 8*x^2).
E.g.f.: (cos(2*x) - sin(2*x))/exp(2*x).
a(n) = -4*a(n-1) - 8*a(n-2).
a(n+4) = -64*a(n).
G.f.: 1/(1 + 4*x/(1 - 2*x/(1 + 2*x))) = 1 - 4*x/(1 + 2*x/(1 - 2*x/(1 + 4*x))). - Michael Somos, Jan 03 2013
a(n) = (-4)^n*hypergeom([1/2-n/2, -n/2], [-n], 2) for n >= 1. - Peter Luschny, Dec 17 2015

A111806 Riordan array (1/(1+3x+2x^2),x/(1+3x+2x^2)).

Original entry on oeis.org

1, -3, 1, 7, -6, 1, -15, 23, -9, 1, 31, -72, 48, -12, 1, -63, 201, -198, 82, -15, 1, 127, -522, 699, -420, 125, -18, 1, -255, 1291, -2223, 1795, -765, 177, -21, 1, 511, -3084, 6562, -6768, 3840, -1260, 238, -24, 1, -1023, 7181, -18324, 23276, -16758, 7266, -1932, 308, -27, 1, 2047, -16398, 49029, -74616, 65870
Offset: 0

Views

Author

Paul Barry, Aug 18 2005

Keywords

Comments

Signed version of A110441. Factors as (1/(1+x),x/(1+x))*((1-x)/(1+x),x(1-x)/(1+x)), or inverse binomial transform of A080246. Inverse of little Schroeder number array A110440. Row sums are A108520. Diagonal sums are (-1)^n*A001906(n+1).

Examples

			Triangle starts
1;
-3,1;
7,-6,1;
-15,23,-9,1;
31,-72,48,-12,1;
		

Formula

T(n,k)=-3*T(n-1,k)+T(n-1,k-1)-2*T(n-2,k), T(0,0)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Jan 04 2013
Previous Showing 11-20 of 20 results.