cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A077463 Number of primes p such that n < p < 2n-2.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 5, 5, 5, 6, 6, 6, 7, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 9, 9, 9, 10, 10, 11, 11, 11, 12, 13, 13, 14, 13, 13, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 13, 13, 13, 14, 15, 15, 14, 15, 15, 15, 15, 15
Offset: 1

Views

Author

Eric W. Weisstein, Nov 05 2002

Keywords

Comments

a(n) > 0 for n > 3 by Bertrand's postulate (and Chebyshev's proof of 1852). - Jonathan Vos Post, Aug 08 2013

Examples

			a(19) = 3, the first value smaller than a previous value, because the only primes between 19 and 2 * 19 - 2 = 36 are {23,29,31}. - _Jonathan Vos Post_, Aug 08 2013
		

Crossrefs

Related sequences:
Primes (p) and composites (c): A000040, A002808, A000720, A065855.
Primes between p(n) and 2*p(n): A063124, A070046; between c(n) and 2*c(n): A376761; between n and 2*n: A035250, A060715, A077463, A108954.
Composites between p(n) and 2*p(n): A246514; between c(n) and 2*c(n): A376760; between n and 2*n: A075084, A307912, A307989, A376759.

Programs

  • Mathematica
    a[n_] := PrimePi[2n - 2] - PrimePi[n]; a[1] = 0; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 31 2012 *)

A376759 Number of composite numbers c with n < c <= 2*n.

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 5, 6, 6, 6, 8, 8, 10, 11, 11, 11, 13, 14, 15, 16, 16, 16, 18, 18, 19, 20, 20, 21, 23, 23, 24, 25, 26, 26, 27, 27, 28, 29, 30, 30, 32, 32, 34, 35, 35, 36, 38, 39, 39, 40, 40, 40, 42, 42, 42, 43, 43, 44, 46, 47, 49, 50, 51, 51, 52, 52, 54, 55, 55, 55, 57, 58, 60, 61, 61, 61, 62, 63, 64, 65, 66, 66, 68, 68, 69, 70, 70, 71, 73, 73, 73, 74, 75, 76, 77, 77
Offset: 1

Views

Author

N. J. A. Sloane, Oct 20 2024

Keywords

Comments

This completes the set of four: A307912, A376759, A307989, and A075084. Since it is not clear which ones are the most important, and they are easily confused, all four are now in the OEIS.

Crossrefs

Related sequences:
Primes (p) and composites (c): A000040, A002808, A000720, A065855.
Primes between p(n) and 2*p(n): A063124, A070046; between c(n) and 2*c(n): A376761; between n and 2*n: A035250, A060715, A077463, A108954.
Composites between p(n) and 2*p(n): A246514; between c(n) and 2*c(n): A376760; between n and 2*n: A075084, A307912, A307989, A376759.

Programs

  • Maple
    chi := proc(n) if n <= 3 then 0 else n - numtheory:-pi(n) - 1; fi; end; # A065855
    A376759 := proc(n) chi(2*n) - chi(n); end;
    a := [seq(A376759(n),n=1..120)];
  • Mathematica
    Table[PrimePi[n] - PrimePi[2*n] + n, {n, 100}] (* Paolo Xausa, Oct 22 2024 *)
  • Python
    from sympy import primepi
    def A376759(n): return n+primepi(n)-primepi(n<<1) # Chai Wah Wu, Oct 20 2024

Formula

a(n) = A000720(n) - A000720(2*n) + n. - Paolo Xausa, Oct 22 2024

A246514 Number of composite numbers between prime(n) and 2*prime(n) exclusive.

Original entry on oeis.org

0, 1, 3, 4, 7, 9, 12, 14, 17, 22, 23, 27, 31, 33, 37, 41, 45, 48, 53, 56, 59, 63, 67, 72, 77, 80, 83, 87, 90, 94, 103, 107, 111, 113, 121, 124, 128, 134, 138, 144, 148, 150, 158, 160, 164, 166, 175, 184, 188, 190, 193, 199, 201, 209, 214, 219, 226, 228, 234
Offset: 1

Views

Author

Odimar Fabeny, Aug 28 2014

Keywords

Examples

			2 P 4 = 0,
3 4 P 6 = 1,
5 6 P 8 9 10 = 3,
7 8 9 10 P 12 P 14 = 4,
11 12 P 14 15 16 P 18 P 20 21 22 = 7
and so on.
		

Crossrefs

Related sequences:
Primes (p) and composites (c): A000040, A002808, A000720, A065855.
Primes between p(n) and 2*p(n): A063124, A070046; between c(n) and 2*c(n): A376761; between n and 2*n: A035250, A060715, A077463, A108954.
Composites between p(n) and 2*p(n): A246514; between c(n) and 2*c(n): A376760; between n and 2*n: A075084, A307912, A307989, A376759.

Programs

  • Maple
    A246515 := proc(n) local p;  p:=ithprime(n); n - 1 + p - numtheory:-pi(2*p - 1); end; # N. J. A. Sloane, Oct 20 2024
    [seq(A246515(n),n=1..120)];
  • Mathematica
    Table[Prime[n] - PrimePi[2*Prime[n]] + n - 1, {n, 100}] (* Paolo Xausa, Oct 22 2024 *)
  • PARI
    s=[]; forprime(p=2, 1000, n=0; for(q=p+1, 2*p-1, if(!isprime(q), n++)); s=concat(s, n)); s \\ Colin Barker, Aug 28 2014
    
  • PARI
    a(n)=prime(n)+n-1-primepi(2*prime(n))
    vector(100, n, a(n)) \\ Faster program. Jens Kruse Andersen, Aug 28 2014
    
  • Python
    from sympy import prime, primepi
    def A246514(n): return (m:=prime(n))+n-1-primepi(m<<1) # Chai Wah Wu, Oct 22 2024

Formula

a(n) + A070046(n) = number of numbers between prime(n) and 2*prime(n), which is prime(n)-1. - N. J. A. Sloane, Aug 28 2014

Extensions

More terms from Colin Barker, Aug 28 2014

A307912 a(n) = n - 1 - pi(2*n-1) + pi(n), where pi is the prime counting function.

Original entry on oeis.org

0, 0, 1, 1, 3, 3, 4, 5, 5, 5, 7, 7, 9, 10, 10, 10, 12, 13, 14, 15, 15, 15, 17, 17, 18, 19, 19, 20, 22, 22, 23, 24, 25, 25, 26, 26, 27, 28, 29, 29, 31, 31, 33, 34, 34, 35, 37, 38, 38, 39, 39, 39, 41, 41, 41, 42, 42, 43, 45, 46, 48, 49, 50, 50, 51, 51, 53, 54
Offset: 1

Views

Author

Wesley Ivan Hurt, May 09 2019

Keywords

Comments

For n > 1, a(n) is the number of composites in the closed interval [n+1, 2n-1].
a(n) is also the number of composites appearing among the largest parts of the partitions of 2n into two distinct parts.

Examples

			a(7) = 4; there are 4 composites in the closed interval [8, 13]: 8, 9, 10 and 12.
		

Crossrefs

Related sequences:
Primes (p) and composites (c): A000040, A002808, A000720, A065855.
Primes between p(n) and 2*p(n): A063124, A070046; between c(n) and 2*c(n): A376761; between n and 2*n: A035250, A060715, A077463, A108954.
Composites between p(n) and 2*p(n): A246514; between c(n) and 2*c(n): A376760; between n and 2*n: A075084, A307912, A307989, A376759.

Programs

  • Maple
    chi := proc(n) if n <= 3 then 0 else n - numtheory:-pi(n) - 1; fi; end; # A065855
    A307912 := proc(n) chi(2*n-1) - chi(n); end;
    A := [seq(A307912(n),n=1..120)]; # N. J. A. Sloane, Oct 20 2024
  • Mathematica
    Table[n - 1 - PrimePi[2 n - 1] + PrimePi[n], {n, 100}]
  • Python
    from sympy import primepi
    def A307912(n): return n+primepi(n)-primepi((n<<1)-1)-1 # Chai Wah Wu, Oct 20 2024

Formula

a(n) = n - 1 - A060715(n).
a(n) = n - 1 - A000720(2*n-1) + A000720(n).

A307989 a(n) = n - pi(2*n) + pi(n-1), where pi is the prime counting function.

Original entry on oeis.org

0, 0, 1, 2, 3, 4, 4, 6, 6, 6, 7, 8, 9, 11, 11, 11, 12, 14, 14, 16, 16, 16, 17, 18, 19, 20, 20, 21, 22, 23, 23, 25, 26, 26, 27, 27, 27, 29, 30, 30, 31, 32, 33, 35, 35, 36, 37, 39, 39, 40, 40, 40, 41, 42, 42, 43, 43, 44, 45, 47, 48, 50, 51, 51, 52, 52, 53, 55
Offset: 1

Views

Author

Wesley Ivan Hurt, May 09 2019

Keywords

Comments

a(n) is the number of composites in the closed interval [n, 2n-1].
a(n) is also the number of composites among the largest parts of the partitions of 2n into two parts.

Examples

			a(7) = 4; There are 7 partitions of 2*7 = 14 into two parts (13,1), (12,2), (11,3), (10,4), (9,5), (8,6), (7,7). Among the largest parts 12, 10, 9 and 8 are composite, so a(7) = 4.
		

Crossrefs

Related sequences:
Primes (p) and composites (c): A000040, A002808, A000720, A065855.
Primes between p(n) and 2*p(n): A063124, A070046; between c(n) and 2*c(n): A376761; between n and 2*n: A035250, A060715, A077463, A108954.
Composites between p(n) and 2*p(n): A246514; between c(n) and 2*c(n): A376760; between n and 2*n: A075084, A307912, A307989, A376759.

Programs

  • Maple
    chi := proc(n) if n <= 3 then 0 else n - numtheory:-pi(n) - 1; fi; end; # A065855
    A307989 := proc(n) chi(2*n-1) - chi(n-1); end;
    a := [seq(A307989(n),n=1..120)];
  • Mathematica
    Table[n - PrimePi[2 n] + PrimePi[n - 1], {n, 100}]
  • Python
    from sympy import primepi
    def A307989(n): return n+primepi(n-1)-primepi(n<<1) # Chai Wah Wu, Oct 20 2024

Formula

a(n) = n - A035250(n).
a(n) = n - A000720(2*n) + A000720(n-1).

A376760 Let c(n) = A002808(n) denote the n-th composite number; a(n) = number of composite numbers c with c(n) <= c <= 2*c(n).

Original entry on oeis.org

3, 5, 7, 7, 7, 9, 12, 12, 12, 15, 17, 17, 17, 19, 20, 21, 21, 22, 24, 26, 27, 27, 28, 28, 30, 31, 31, 33, 36, 36, 37, 40, 40, 41, 41, 41, 43, 43, 44, 44, 45, 48, 51, 52, 52, 53, 53, 56, 56, 56, 59, 62, 62, 62, 63, 64, 66, 67, 67, 69, 70, 71, 71, 72, 74, 74, 75, 76, 77, 78, 78, 80, 80, 80, 83, 86, 87, 87, 90, 93, 94, 94, 96, 96, 97, 97, 98, 99, 99, 99, 100, 101, 102, 103
Offset: 1

Views

Author

N. J. A. Sloane, Oct 22 2024

Keywords

Comments

There are three other versions: composite c with c(n) < c < 2*c(n): a(n)-2; c(n) <= c < 2*c(n): a(n) - 1; and c(n) < c <= 2*c(n): also a(n) - 1.

Examples

			The 5th composite number is 10, and 10, 12, 14, 15, 16, 18, 20 are composite, so a(5) = 7.
		

Crossrefs

Related sequences:
Primes (p) and composites (c): A000040, A002808, A000720, A065855.
Primes between p(n) and 2*p(n): A063124, A070046; between c(n) and 2*c(n): A376761; between n and 2*n: A035250, A060715, A077463, A108954.
Composites between p(n) and 2*p(n): A246514; between c(n) and 2*c(n): A376760; between n and 2*n: A075084, A307912, A307989, A376759.

Programs

  • Maple
    chi := proc(n) if n <= 3 then 0 else n - numtheory:-pi(n) - 1; fi; end; # A065855
    t := []: for n from 2 to 200000 do if not isprime(n) then t := [op(t), n]; fi; od: # precompute A002808
    ithchi := proc(n) t[n]; end: # returns n-th composite number A002808 for any n <= 182015, analogous to ithprime
    A376760 := proc(n) chi(2*ithchi(n)) - n + 1; end;
    [seq(A376760(n),n=1..120)];
  • Mathematica
    MapIndexed[2*# - PrimePi[2*#] - #2[[1]] &, Select[Range[100], CompositeQ]] (* Paolo Xausa, Oct 22 2024 *)
  • Python
    from sympy import composite, primepi
    def A376760(n): return (m:=composite(n)<<1)-primepi(m)-n # Chai Wah Wu, Oct 22 2024

Formula

a(n) = 2*A002808(n) - A000720(2*A002808(n)) - n. - Paolo Xausa, Oct 22 2024

A376761 Number of primes between the n-th composite number c(n) and 2*c(n).

Original entry on oeis.org

2, 2, 2, 3, 4, 4, 3, 4, 5, 4, 4, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 9, 9, 9, 10, 10, 9, 10, 10, 9, 10, 10, 11, 12, 12, 13, 13, 14, 14, 13, 12, 12, 13, 13, 14, 13, 14, 15, 14, 13, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 18, 19, 19, 20, 21, 20, 19, 19, 20, 19, 18, 18, 19, 19, 20, 20, 21, 21, 21, 22, 23, 23, 23, 23, 23, 24, 23, 24, 24, 24, 24, 24, 25
Offset: 1

Views

Author

N. J. A. Sloane, Oct 22 2024

Keywords

Comments

Obviously the endpoints are not counted (since they are composite).

Crossrefs

Related sequences:
Primes (p) and composites (c): A000040, A002808, A000720, A065855.
Primes between p(n) and 2*p(n): A063124, A070046; between c(n) and 2*c(n): A376761; between n and 2*n: A035250, A060715, A077463, A108954.
Composites between p(n) and 2*p(n): A246514; between c(n) and 2*c(n): A376760; between n and 2*n: A075084, A307912, A307989, A376759.

Programs

  • Mathematica
    MapIndexed[PrimePi[2*#] + #2[[1]] - # + 1 &, Select[Range[100], CompositeQ]] (* Paolo Xausa, Oct 22 2024 *)
  • Python
    from sympy import composite, primepi
    def A376761(n): return n+1-(m:=composite(n))+primepi(m<<1) # Chai Wah Wu, Oct 22 2024

Formula

a(n) = A000720(2*A002808(n)) - A002808(n) + n + 1. - Paolo Xausa, Oct 22 2024

A084140 a(n) is the smallest number j such that if x >= j there are at least n primes between x and 2x exclusively.

Original entry on oeis.org

2, 6, 9, 15, 21, 24, 30, 34, 36, 49, 51, 54, 64, 75, 76, 84, 90, 91, 114, 115, 117, 120, 121, 132, 135, 141, 154, 156, 174, 175, 184, 187, 201, 205, 210, 216, 217, 220, 231, 244, 246, 252, 285, 286, 294, 297, 300, 301, 304, 321, 322, 324, 327, 330, 339, 360, 364
Offset: 1

Views

Author

Harry J. Smith, May 15 2003

Keywords

Comments

For all m >= a(n) there are at least n primes between m and 2m exclusively. This calculation relies on the fact that pi(2m) - pi(m) > m/(3*log(m)) for m >= 5. This is one more than the terms of A084139 with offset changed from 0 to 1.
For n > 5889, pi(2n) - pi(n) > f(2, 2n) - f(3, n) where f(k, x) = x/log x * (1 + 1/log x + k/(log x)^2). This may be useful for checking larger terms. The constant 3 can be improved at the cost of an increase in the constant 5889. - Charles R Greathouse IV, May 02 2012
A168421(n) = nextprime(a(n)), where nextprime(x) is the next prime >= x. - John W. Nicholson, Dec 21 2012
a(1) = ceiling((A104272(1)+1)/2) modifies the only even prime, 2; which has been stated, in Formula, as a(1) = A104272(1); for all others, a(n) = (A104272(n)+1)/2 = ceiling ((A104272(n)+1)/2). - John W. Nicholson, Dec 24 2012
Srinivasan's Lemma (2014): previousprime(a(n)) = p_(k-n) < (p_k)/2, where the n-th Ramanujan Prime R_n is the k-th prime p_k, and with n > 1. Proof: By the minimality of R_n, the interval ((p_k)/2,p_k] contains exactly n primes, so p_(k-n) < (p_k)/2. - Copied and adapted from a comment by Jonathan Sondow in A168421 by John W. Nicholson, Feb 17 2015

Examples

			a(11)=51 since there are at least 11 primes between m and 2m for all m >= 51 and this is not true for any m < 51. Although a(100)=720 is not listed, for all m >= 720, there are at least 100 primes between m and 2m.
		

References

  • Paulo Ribenboim, The Little Book of Big Primes, Springer-Verlag, 1991, p. 140.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag, 2004, p. 181.

Crossrefs

Programs

Formula

a(1) = A104272(1); for n >= 2, a(n) = (A104272(n)+1)/2. - Vladimir Shevelev, Dec 07 2012
a(n) = ceiling((A104272(n)+1)/2) for n >= 1. - John W. Nicholson, Dec 24 2012

A263995 Cardinality of the union of the set of sums and the set of products made from pairs of integers from {1..n}.

Original entry on oeis.org

2, 4, 7, 11, 15, 20, 27, 32, 39, 46, 56, 63, 75, 83, 93, 102, 118, 127, 146, 156, 169, 182, 204, 215, 231, 245, 261, 274, 302, 315, 346, 361, 379, 398, 418, 432, 469, 489, 510, 527, 567, 585, 627, 647, 669, 693, 739, 756, 788, 810, 838, 862, 914, 937
Offset: 1

Views

Author

Hugo Pfoertner, Nov 15 2015

Keywords

Comments

The November 2015 - Feb 2016 round of Al Zimmermann's Programming Contests asks for sets of positive integers (instead of {1..n}) minimizing the cardinality of the union of the sum-set and the product-set for set sizes 40, 80, ..., 1000. [corrected by Al Zimmermann, Nov 24 2015]

Examples

			a(3)=7 because the union of the set of sums {1+1, 1+2, 1+3, 2+2, 2+3, 3+3} and the set of products {1*1, 1*2, 1*3, 2*2, 2*3, 3*3} = {2,3,4,5,6} U {1,2,3,4,6,9} = {1,2,3,4,5,6,9} has cardinality 7.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer-Verlag New York, 2004. Problem F18.

Crossrefs

Programs

  • PARI
    a(n) = {my(v = [1..n]); v = setunion(setbinop((x,y)->(x+y), v), setbinop((x,y)->(x*y), v)); #v;} \\ Michel Marcus, Apr 13 2022
    
  • Python
    from math import prod
    from itertools import combinations_with_replacement
    def A263995(n): return len(set(sum(x) for x in combinations_with_replacement(range(1,n+1),2)) | set(prod(x) for x in combinations_with_replacement(range(1,n+1),2))) # Chai Wah Wu, Apr 15 2022

Formula

a(n) = A027424(n) + A108954(n). - Jon Maiga, Jan 03 2022

A074990 Number of primes in the interval (n,3n].

Original entry on oeis.org

2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 8, 9, 8, 9, 8, 9, 10, 10, 10, 11, 12, 12, 13, 14, 13, 14, 13, 13, 14, 15, 16, 17, 17, 18, 18, 18, 17, 17, 17, 18, 18, 19, 19, 19, 19, 20, 21, 21, 21, 21, 22, 23, 23, 24, 23, 24, 24, 24, 24, 25, 26, 27, 27, 27, 27, 27, 27, 27, 26, 26, 27, 28
Offset: 1

Views

Author

Zak Seidov, Oct 02 2002

Keywords

Comments

Differences a(n+1)-a(n) are 0, 1 or -1.

Examples

			a(4) = 3 because between 4 and 12 there are 3 primes: 5, 7, 11; a(7) = 4 because between 7 and 21 there are 4 primes: 11, 13, 17, 19.
		

Crossrefs

Programs

  • Maple
    A074990 := proc(n)
        numtheory[pi](3*n)-numtheory[pi](n) ;
    end proc: # R. J. Mathar, Nov 03 2017
  • Mathematica
    s=3; a[n_] := PrimePi[s*n]-PrimePi[n]

Formula

a(n) = A000720(3n) - A000720(n).
a(n) = Sum_{j=n+1..3*n} A010051(j).
Previous Showing 11-20 of 30 results. Next