A111528
Square table, read by antidiagonals, where the g.f. for row n+1 is generated by: x*R_{n+1}(x) = (1+n*x - 1/R_n(x))/(n+1) with R_0(x) = Sum_{n>=0} n!*x^n.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 13, 24, 1, 1, 5, 22, 71, 120, 1, 1, 6, 33, 148, 461, 720, 1, 1, 7, 46, 261, 1156, 3447, 5040, 1, 1, 8, 61, 416, 2361, 10192, 29093, 40320, 1, 1, 9, 78, 619, 4256, 23805, 99688, 273343, 362880, 1, 1, 10, 97, 876, 7045, 48096, 263313
Offset: 0
Table begins:
1, 1, 2, 6, 24, 120, 720, 5040, 40320, ...
1, 1, 3, 13, 71, 461, 3447, 29093, 273343, ...
1, 1, 4, 22, 148, 1156, 10192, 99688, 1069168, ...
1, 1, 5, 33, 261, 2361, 23805, 263313, 3161781, ...
1, 1, 6, 46, 416, 4256, 48096, 591536, 7840576, ...
1, 1, 7, 61, 619, 7045, 87955, 1187845, 17192275, ...
1, 1, 8, 78, 876, 10956, 149472, 2195208, 34398288, ...
1, 1, 9, 97, 1193, 16241, 240057, 3804353, 64092553, ...
1, 1, 10, 118, 1576, 23176, 368560, 6262768, 112784896, ...
Rows are generated by logarithms of factorial series:
log(1 + x + 2*x^2 + 6*x^3 + 24*x^4 + ... n!*x^n + ...) = x + (3/2)*x^2 + (13/3)*x^3 + (71/4)*x^4 + (461/5)*x^5 + ...
(1/2)*log(1 + 2*x + 6*x^2 + ... + ((n+1)!/1!)*x^n + ...) = x + (4/2)*x^2 + (22/3)*x^3 + (148/4)*x^4 + (1156/5)*x^5 + ...
(1/3)*log(1 + 3*x + 12*x^2 + 60*x^3 + ... + ((n+2)!/2!)*x^n + ...) = x + (5/2)*x^2 + (33/3)*x^3 + (261/4)*x^4 + (2361/5)*x^5 +...
G.f. of row n may be expressed by the continued fraction:
R_n(x) = 1/(1+n*x - (n+1)*x/(1+(n+1)*x - (n+2)*x/(1+(n+2)*x -...
or recursively by: R_n(x) = 1/(1+n*x - (n+1)*x*R_{n+1}(x)).
-
T := (n, k) -> coeff(series(hypergeom([n+1, 1], [], x)/hypergeom([n, 1], [], x), x, 21), x, k):
#display as a sequence
seq(seq(T(n-k, k), k = 0..n), n = 0..10);
# display as a square array
seq(print(seq(T(n, k), k = 0..10)), n = 0..10); # Peter Bala, Jul 16 2022
-
T[n_, k_] := T[n, k] = Which[n < 0 || k < 0, 0, k == 0 || k == 1, 1, n == 0, k!, True, (T[n - 1, k + 1] - T[n - 1, k])/n - Sum[T[n, j]*T[n - 1, k - j], {j, 1, k - 1}]]; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 18 2018 *)
-
{T(n,k)=if(n<0||k<0,0,if(k==0||k==1,1,if(n==0,k!, (T(n-1,k+1)-T(n-1,k))/n-sum(j=1,k-1,T(n,j)*T(n-1,k-j)))))}
for(n=0,10,for(k=0,10,print1(T(n,k),", ")); print(""))
-
{T(n,k)=if(n<0||k<0,0,if(k==0,1,if(n==0,k!, k/n*polcoeff(log(sum(m=0,k,(n-1+m)!/(n-1)!*x^m)),k))))}
for(n=0,10,for(k=0,10,print1(T(n,k),", ")); print(""))
Original entry on oeis.org
1, 1, 4, 22, 148, 1156, 10192, 99688, 1069168, 12468208, 157071424, 2126386912, 30797423680, 475378906432, 7793485765888, 135284756985472, 2479535560687360, 47860569736036096, 970606394944476160, 20635652201785613824, 459015456156148876288, 10662527360021306782720
Offset: 0
(1/2)*log(1 + 2*x + 6*x^2 + ... + ((n+1)!/1!)*x^n + ...)
= x + (4/2)*x^2 + (22/3)*x^3 + (148/4)*x^4 + (1156/5)*x^5 + ...
- Robert Israel, Table of n, a(n) for n = 0..410
- Paul Barry, A note on number triangles that are almost their own production matrix, arXiv:1804.06801 [math.CO], 2018.
- Richard J. Martin and Michael J. Kearney, Integral representation of certain combinatorial recurrences, Combinatorica: 35:3 (2015), 309-315.
- A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
-
N:= 30: # to get a(0) to a(N)
g:= 1/2*log(add((n+1)!*x^n,n=0..N+1)):
S:= series(g,x,N+1);
1, seq(j*coeff(S,x,j),j=0..N); # Robert Israel, Jul 10 2015
-
T[n_, k_] := T[n, k] = Which[n<0 || k<0, 0, k==0 || k==1, 1, n==0, k!, True, (T[n-1, k+1]-T[n-1, k])/n - Sum[T[n, j] T[n-1, k-j], {j, 1, k-1}]];
a[n_] := T[2, n];
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Aug 09 2018 *)
-
{a(n)=if(n<0,0,if(n==0,1, (n/2)*polcoeff(log(sum(m=0,n,(m+1)!/1!*x^m)),n)))}
Original entry on oeis.org
1, 1, 5, 33, 261, 2361, 23805, 263313, 3161781, 40907241, 567074925, 8385483393, 131787520101, 2194406578521, 38605941817245, 715814473193073, 13956039627763221, 285509132504621001, 6116719419966460365
Offset: 0
(1/3)*(log(1 + 3*x + 12*x^2 + 60*x^3 + ... + (n+2)!/2!)*x^n + ...)
= x + 5/2*x^2 + 33/3*x^3 + 261/4*x^4 + 2361/5*x^5 + ...
-
T[n_, k_] := T[n, k] = Which[n<0 || k<0, 0, k==0 || k==1, 1, n==0, k!, True, (T[n-1, k+1]-T[n-1, k])/n - Sum[T[n, j]*T[n-1, k-j], {j, 1, k-1}]];
a[n_] := T[3, n];
Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Aug 09 2018 *)
-
{a(n)=if(n<0,0,if(n==0,1, (n/3)*polcoeff(log(sum(m=0,n,(m+2)!/2!*x^m) + x*O(x^n)),n)))} \\ fixed by Vaclav Kotesovec, Jul 27 2015
Original entry on oeis.org
1, 1, 7, 61, 619, 7045, 87955, 1187845, 17192275, 264940405, 4326439075, 74593075525, 1353928981075, 25809901069525, 515683999204675, 10779677853137125, 235366439343773875, 5359766538695291125
Offset: 0
(1/5)*(log(1 + 5*x + 30*x^2 + 210*x^3 + ... + (n+4)!/4!)*x^n + ...)
= x + 7/2*x^2 + 61/3*x^3 + 619/4*x^4 + 7045/5*x^5 + ...
-
m = 18; (-1/(5x)) ContinuedFractionK[-i x, 1 + i x, {i, 5, m+4}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 02 2019 *)
-
{a(n)=if(n<0,0,if(n==0,1, (n/5)*polcoeff(log(sum(m=0,n,(m+4)!/4!*x^m) + x*O(x^n)),n)))} \\ fixed by Vaclav Kotesovec, Jul 27 2015
Original entry on oeis.org
1, 1, 8, 78, 876, 10956, 149472, 2195208, 34398288, 571525200, 10022997888, 184897670112, 3578224662720, 72486450479808, 1534267158087168, 33877135427154048, 779208751651730688, 18645519786163266816
Offset: 0
(1/6)*(log(1 + 6*x + 42*x^2 + 336*x^3 + ... + (n+5)!/5!)*x^n + ...)
= x + 8/2*x^2 + 78/3*x^3 + 876/4*x^4 + 10956/5*x^5 + ...
-
m = 18; (-1/(6x)) ContinuedFractionK[-i x, 1 + i x, {i, 6, m+5}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 02 2019 *)
-
{a(n)=if(n<0,0,if(n==0,1, (n/6)*polcoeff(log(sum(m=0,n,(m+5)!/5!*x^m) + x*O(x^n)),n)))} \\ fixed by Vaclav Kotesovec, Jul 27 2015
A111553
Triangular matrix T, read by rows, that satisfies: SHIFT_LEFT(column 0 of T^p) = p*(column p+4 of T), or [T^p](m,0) = p*T(p+m,p+4) for all m>=1 and p>=-4.
Original entry on oeis.org
1, 1, 1, 6, 2, 1, 46, 10, 3, 1, 416, 72, 16, 4, 1, 4256, 632, 116, 24, 5, 1, 48096, 6352, 1016, 184, 34, 6, 1, 591536, 70912, 10176, 1664, 282, 46, 7, 1, 7840576, 864192, 113216, 17024, 2696, 416, 60, 8, 1, 111226816, 11371072, 1375456, 192384, 28792, 4256, 592, 76, 9, 1
Offset: 0
SHIFT_LEFT(column 0 of T^-4) = -4*(column 0 of T);
SHIFT_LEFT(column 0 of T^-3) = -3*(column 1 of T);
SHIFT_LEFT(column 0 of T^-2) = -2*(column 2 of T);
SHIFT_LEFT(column 0 of T^-1) = -1*(column 3 of T);
SHIFT_LEFT(column 0 of log(T)) = column 4 of T;
SHIFT_LEFT(column 0 of T^1) = 1*(column 5 of T);
where SHIFT_LEFT of column sequence shifts 1 place left.
Triangle T begins:
1;
1,1;
6,2,1;
46,10,3,1;
416,72,16,4,1;
4256,632,116,24,5,1;
48096,6352,1016,184,34,6,1;
591536,70912,10176,1664,282,46,7,1;
7840576,864192,113216,17024,2696,416,60,8,1; ...
After initial term, column 3 is 4 times column 0.
Matrix inverse T^-1 = A111559 starts:
1;
-1,1;
-4,-2,1;
-24,-4,-3,1;
-184,-24,-4,-4,1;
-1664,-184,-24,-4,-5,1;
-17024,-1664,-184,-24,-4,-6,1; ...
where columns are all equal after initial terms;
compare columns of T^-1 to column 3 of T.
Matrix logarithm log(T) = A111560 is:
0;
1,0;
5,2,0;
34,7,3,0;
282,44,10,4,0;
2696,354,60,14,5,0;
28792,3328,470,84,19,6,0; ...
compare column 0 of log(T) to column 4 of T.
Cf.
A111531 (column 0),
A111554 (column 1),
A111555 (column 2),
A111556 (column 3),
A111557 (column 4),
A111558 (row sums),
A111559 (matrix inverse),
A111560 (matrix log); related tables:
A111528,
A104980,
A111536,
A111544.
-
T[n_, k_] := T[n, k] = If[nJean-François Alcover, Aug 09 2018, from PARI *)
-
T(n,k)=if(n
A089949
Triangle T(n,k), read by rows, given by [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 6, 6, 0, 1, 12, 34, 24, 0, 1, 20, 110, 210, 120, 0, 1, 30, 270, 974, 1452, 720, 0, 1, 42, 560, 3248, 8946, 11256, 5040, 0, 1, 56, 1036, 8792, 38338, 87504, 97296, 40320, 0, 1, 72, 1764, 20580, 129834, 463050, 920184, 930960, 362880
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 1, 6, 6;
0, 1, 12, 34, 24;
0, 1, 20, 110, 210, 120;
0, 1, 30, 270, 974, 1452, 720; ...
-
m = 10;
gf = (1/x)*(1-1/(1+Sum[Product[(1+k*y), {k, 0, n-1}]*x^n, {n, 1, m}]));
CoefficientList[#, y]& /@ CoefficientList[gf + O[x]^m, x] // Flatten (* Jean-François Alcover, May 11 2019 *)
-
T(n,k)=if(nPaul D. Hanna, Aug 16 2005
Original entry on oeis.org
1, 1, 4, 33, 416, 7045, 149472, 3804353, 112784896, 3812791581, 144643185600, 6081135558817, 280510445260800, 14080668974435141, 763890295406672896, 44529851124925034625, 2775373003913373810688, 184147301185264051623181
Offset: 0
-
T[n_, k_] := T[n, k] = Which[n<0 || k<0, 0, k==0 || k==1, 1, n==0, k!, True, (T[n-1, k+1]-T[n-1, k])/n - Sum[T[n, j] T[n-1, k-j], {j, 1, k-1}]];
a[n_] := T[n, n];
Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Aug 09 2018 *)
-
{a(n)=if(n<0,0,if(n==0,1, polcoeff(log(sum(m=0,n,(n-1+m)!/(n-1)!*x^m)),n)))}
Original entry on oeis.org
1, 4, 24, 184, 1664, 17024, 192384, 2366144, 31362304, 444907264, 6720628224, 107674883584, 1823884857344, 32575705493504, 612054254936064, 12071987619713024, 249477777420304384, 5392386599983366144
Offset: 0
-
{a(n)=if(n<0,0,(matrix(n+4,n+4,m,j,if(m==j,1,if(m==j+1,-m+1, -(m-j-1)*polcoeff(log(sum(i=0,m,(i+3)!/3!*x^i)),m-j-1))))^-1)[n+4,4])}
A172455
The case S(6,-4,-1) of the family of self-convolutive recurrences studied by Martin and Kearney.
Original entry on oeis.org
1, 7, 84, 1463, 33936, 990542, 34938624, 1445713003, 68639375616, 3676366634402, 219208706540544, 14397191399702118, 1032543050697424896, 80280469685284582812, 6725557192852592984064, 603931579625379293509683
Offset: 1
G.f. = x + 7*x^2 + 84*x^3 + 1463*x^4 + 33936*x^5 + 990542*x^6 + 34938624*x^7 + ...
a(2) = 7 since (6*2 - 4) * a(2-1) - (a(1) * a(2-1)) = 7.
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, Aequat. Math., 80 (2010), 291-318. see p. 307.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, arXiv:1103.4936 [math.CO], 2011.
- NIST Digital Library of Mathematical Functions, Airy Functions.
- A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
- Eric Weisstein's World of Mathematics, Airy Functions, contains the definitions of Ai(x), Bi(x).
Cf.
A000079 S(1,1,-1),
A000108 S(0,0,1),
A000142 S(1,-1,0),
A000244 S(2,1,-2),
A000351 S(4,1,-4),
A000400 S(5,1,-5),
A000420 S(6,1,-6),
A000698 S(2,-3,1),
A001710 S(1,1,0),
A001715 S(1,2,0),
A001720 S(1,3,0),
A001725 S(1,4,0),
A001730 S(1,5,0),
A003319 S(1,-2,1),
A005411 S(2,-4,1),
A005412 S(2,-2,1),
A006012 S(-1,2,2),
A006318 S(0,1,1),
A047891 S(0,2,1),
A049388 S(1,6,0),
A051604 S(3,1,0),
A051605 S(3,2,0),
A051606 S(3,3,0),
A051607 S(3,4,0),
A051608 S(3,5,0),
A051609 S(3,6,0),
A051617 S(4,1,0),
A051618 S(4,2,0),
A051619 S(4,3,0),
A051620 S(4,4,0),
A051621 S(4,5,0),
A051622 S(4,6,0),
A051687 S(5,1,0),
A051688 S(5,2,0),
A051689 S(5,3,0),
A051690 S(5,4,0),
A051691 S(5,5,0),
A053100 S(6,1,0),
A053101 S(6,2,0),
A053102 S(6,3,0),
A053103 S(6,4,0),
A053104 S(7,1,0),
A053105 S(7,2,0),
A053106 S(7,3,0),
A062980 S(6,-8,1),
A082298 S(0,3,1),
A082301 S(0,4,1),
A082302 S(0,5,1),
A082305 S(0,6,1),
A082366 S(0,7,1),
A082367 S(0,8,1),
A105523 S(0,-2,1),
A107716 S(3,-4,1),
A111529 S(1,-3,2),
A111530 S(1,-4,3),
A111531 S(1,-5,4),
A111532 S(1,-6,5),
A111533 S(1,-7,6),
A111546 S(1,0,1),
A111556 S(1,1,1),
A143749 S(0,10,1),
A146559 S(1,1,-2),
A167872 S(2,-3,2),
A172450 S(2,0,-1),
A172485 S(-1,-2,3),
A177354 S(1,2,1),
A292186 S(4,-6,1),
A292187 S(3, -5, 1).
-
a[1] = 1; a[n_]:= a[n] = (6*n-4)*a[n-1] - Sum[a[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* Vaclav Kotesovec, Jan 19 2015 *)
-
{a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (6 * k - 4) * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 24 2011 */
-
S(v1, v2, v3, N=16) = {
my(a = vector(N)); a[1] = 1;
for (n = 2, N, a[n] = (v1*n+v2)*a[n-1] + v3*sum(j=1,n-1,a[j]*a[n-j])); a;
};
S(6,-4,-1)
\\ test: y = x*Ser(S(6,-4,-1,201)); 6*x^2*y' == y^2 - (2*x-1)*y - x
\\ Gheorghe Coserea, May 12 2017
Showing 1-10 of 13 results.
Comments