cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A338029 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) is the number of spanning trees in the n X k king graph.

Original entry on oeis.org

1, 1, 1, 1, 16, 1, 1, 192, 192, 1, 1, 2304, 17745, 2304, 1, 1, 27648, 1612127, 1612127, 27648, 1, 1, 331776, 146356224, 1064918960, 146356224, 331776, 1, 1, 3981312, 13286470095, 698512774464, 698512774464, 13286470095, 3981312, 1
Offset: 1

Views

Author

Seiichi Manyama, Nov 29 2020

Keywords

Examples

			Square array T(n,k) begins:
  1,     1,         1,            1,                1, ...
  1,    16,       192,         2304,            27648, ...
  1,   192,     17745,      1612127,        146356224, ...
  1,  2304,   1612127,   1064918960,     698512774464, ...
  1, 27648, 146356224, 698512774464, 3271331573452800, ...
		

Crossrefs

Rows and columns 1..5 give A000012, A338100, A338532, A338617, A339257.
Main diagonal gives A288957.
Cf. A116469.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_nXk_king_graph(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
                if i < k:
                    grids.append((i + (j - 1) * k, i + j * k + 1))
                if i > 1:
                    grids.append((i + (j - 1) * k, i + j * k - 1))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
        return grids
    def A338029(n, k):
        if n == 1 or k == 1: return 1
        universe = make_nXk_king_graph(n, k)
        GraphSet.set_universe(universe)
        spanning_trees = GraphSet.trees(is_spanning=True)
        return spanning_trees.len()
    print([A338029(j + 1, i - j + 1) for i in range(8) for j in range(i + 1)])

Formula

T(n,k) = T(k,n).

A360194 Array read by antidiagonals: T(m,n) is the number of acyclic spanning subgraphs in the grid graph P_m X P_n.

Original entry on oeis.org

1, 2, 2, 4, 15, 4, 8, 112, 112, 8, 16, 836, 3102, 836, 16, 32, 6240, 85818, 85818, 6240, 32, 64, 46576, 2373870, 8790016, 2373870, 46576, 64, 128, 347648, 65664106, 900013270, 900013270, 65664106, 347648, 128, 256, 2594880, 1816344222, 92146956300, 341008617408, 92146956300, 1816344222, 2594880, 256
Offset: 1

Views

Author

Andrew Howroyd, Jan 29 2023

Keywords

Comments

Acyclic spanning subgraphs are also called spanning forests.

Examples

			Table starts:
========================================================
m\n|  1     2        3           4               5
---+----------------------------------------------------
1  |  1     2        4           8              16 ...
2  |  2    15      112         836            6240 ...
3  |  4   112     3102       85818         2373870 ...
4  |  8   836    85818     8790016       900013270 ...
5  | 16  6240  2373870   900013270    341008617408 ...
6  | 32 46576 65664106 92146956300 129187804977182 ...
   ...
		

Crossrefs

Rows 1..4 are A000079(n-1), A022026(n-1), A158450, A360195.
Main diagonal is A080691.
Cf. A116469 (spanning trees), A359993 (connected spanning subgraphs), A360202.

A348566 Triangle read by rows: T(m, n) is the number of symmetric recurrent sandpiles on an m X n grid (m >= 0, 0 <= n <= m).

Original entry on oeis.org

1, 1, 4, 1, 3, 2, 1, 14, 7, 128, 1, 11, 5, 71, 36, 1, 52, 18, 1358, 539, 43264, 1, 41, 13, 769, 281, 17753, 6728, 1, 194, 47, 14852, 4271, 1452866, 434657, 151519232, 1, 153, 34, 8449, 2245, 603126, 167089, 46069729, 12988816, 1, 724, 123, 163534, 34276, 49704772, 10894561, 16236962114, 3625549353, 5475450241024
Offset: 0

Views

Author

Andrey Zabolotskiy, Oct 22 2021

Keywords

Comments

Terms of this triangle count recurrent sandpiles on rectangular grids that have vertical and horizontal symmetries. Terms of A348567 count recurrent sandpiles on square grids that also have diagonal symmetries.

Examples

			The triangle begins:
  1
  1  4
  1  3  2
  1 14  7  128
  1 11  5   71  36
  1 52 18 1358 539 43264
  1 41 13  769 281 17753 6728
...
See Fig. 9 of the paper by Florescu et al. for the T(4, 4) = 36 symmetric recurrent sandpiles on a 4x4 grid.
		

Crossrefs

Formula

T(2m, 2n) = A187617(m, n) = A187618(m, n). [Florescu et al., Theorem 15]
T(2m, 2n-1) = T(2n-1, 2m) = A103997(m, n). [Florescu et al., Theorem 18]
T(2m-1, 2n-1) = Product_{h=1..m, k=1..n} 4*(z(h, m) + z(k, n)) where z(k, n) = cos(Pi*(2k-1)/(4n)). [Florescu et al., Theorem 23]
A256045(m, n) divides T(m, n), T(m, n) divides A116469(m+1, n+1).
This triangle can obviously be extended to n > m as T(m, n) = T(n, m).

A334002 Number of spanning trees in the graph P_7 x P_n.

Original entry on oeis.org

1, 2911, 4768673, 7022359583, 10021992194369, 14143261515284447, 19872369301840986112, 27873182693625548898079, 39067130344394503972142977, 54740416599810921320592441119, 76692291658239649098972455530913, 107441842254735898225957962027174559, 150517199699838971875005120330439121217
Offset: 1

Views

Author

Seiichi Manyama, Apr 12 2020

Keywords

Crossrefs

Row m=7 of A116469.

Programs

  • Mathematica
    a[n_] := Resultant[ChebyshevU[n - 1, x/2], ChebyshevU[6, (4 - x)/2], x]; Array[a, 13] (* Amiram Eldar, May 04 2021 *)
  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A116469(n, k):
        if n == 1 or k == 1: return 1
        universe = tl.grid(n - 1, k - 1)
        GraphSet.set_universe(universe)
        spanning_trees = GraphSet.trees(is_spanning=True)
        return spanning_trees.len()
    def A334002(n):
        return A116469(n, 7)
    print([A334002(n) for n in range(1, 15)])

A334003 Number of spanning trees in the graph P_8 x P_n.

Original entry on oeis.org

1, 10864, 59817135, 289143013376, 1342421467113969, 6136973985625588560, 27873182693625548898079, 126231322912498539682594816, 570929651486775190858844600865, 2580716459066338161324165906475056, 11662182187505395757590783332919031887
Offset: 1

Views

Author

Seiichi Manyama, Apr 12 2020

Keywords

Crossrefs

Row m=8 of A116469.

Programs

  • Mathematica
    a[n_] := Resultant[ChebyshevU[n - 1, x/2], ChebyshevU[7, (4 - x)/2], x]; Array[a, 11] (* Amiram Eldar, May 04 2021 *)
  • PARI
    {a(n) = polresultant(polchebyshev(n-1, 2, x/2), polchebyshev(7, 2, (4-x)/2))}

Formula

See Peter Bala's formula in A116469.

A334004 Number of spanning trees in the graph P_9 x P_n.

Original entry on oeis.org

1, 40545, 750331584, 11905151192865, 179796299139278305, 2662079368040434932480, 39067130344394503972142977, 570929651486775190858844600865, 8326627661691818545121844900397056, 121316352059447360262303173959408358625, 1766658737971934774798769007686932254154689
Offset: 1

Views

Author

Seiichi Manyama, Apr 12 2020

Keywords

Crossrefs

Row m=9 of A116469.

Programs

  • Mathematica
    a[n_] := Resultant[ChebyshevU[n - 1, x/2], ChebyshevU[8, (4 - x)/2], x]; Array[a, 11] (* Amiram Eldar, May 04 2021 *)
  • PARI
    {a(n) = polresultant(polchebyshev(n-1, 2, x/2), polchebyshev(8, 2, (4-x)/2))}
    
  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A116469(n, k):
        if n == 1 or k == 1: return 1
        universe = tl.grid(n - 1, k - 1)
        GraphSet.set_universe(universe)
        spanning_trees = GraphSet.trees(is_spanning=True)
        return spanning_trees.len()
    def A334004(n):
        return A116469(n, 9)
    print([A334004(n) for n in range(1, 10)])

A334005 Number of spanning trees in the graph P_10 x P_n.

Original entry on oeis.org

1, 151316, 9411975375, 490179860527896, 24080189412483072000, 1154617875754582889149500, 54740416599810921320592441119, 2580716459066338161324165906475056, 121316352059447360262303173959408358625, 5694319004079097795957215725765328371712000
Offset: 1

Views

Author

Seiichi Manyama, Apr 12 2020

Keywords

Crossrefs

Row m=10 of A116469.

Programs

  • Mathematica
    a[n_] := Resultant[ChebyshevU[n - 1, x/2], ChebyshevU[9, (4 - x)/2], x]; Array[a, 10] (* Amiram Eldar, May 04 2021 *)
  • PARI
    {a(n) = polresultant(polchebyshev(n-1, 2, x/2), polchebyshev(9, 2, (4-x)/2))}

Formula

See Peter Bala's formula in A116469.

A340475 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Product_{a=1..n} Product_{b=1..k} (4*sin(a*Pi/(2*n+1))^2 + 4*sin(b*Pi/(2*k+1))^2).

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 29, 29, 1, 1, 139, 500, 139, 1, 1, 666, 8329, 8329, 666, 1, 1, 3191, 138301, 463736, 138301, 3191, 1, 1, 15289, 2295701, 25543057, 25543057, 2295701, 15289, 1, 1, 73254, 38105729, 1404312491, 4614756624, 1404312491, 38105729, 73254, 1
Offset: 0

Views

Author

Seiichi Manyama, Jan 09 2021

Keywords

Examples

			Square array begins:
  1,   1,      1,        1,          1, ...
  1,   6,     29,      139,        666, ...
  1,  29,    500,     8329,     138301, ...
  1, 139,   8329,   463736,   25543057, ...
  1, 666, 138301, 25543057, 4614756624, ...
		

Crossrefs

Rows and columns 0..1 give A000012, A030221.
Main diagonal gives A127605.

Programs

  • PARI
    default(realprecision, 120);
    {T(n, k) = round(prod(a=1, n, prod(b=1, k, 4*sin(a*Pi/(2*n+1))^2+4*sin(b*Pi/(2*k+1))^2)))}

Formula

T(n,k) = T(k,n).

A349718 Number of spanning trees in the n X n grid graph where rotations and reflections are not counted as distinct.

Original entry on oeis.org

1, 1, 28, 12600, 69699849, 4070693024640, 2484046163254367574, 15778915364062895746351104, 1040828457711477326843036225608036, 711789875509887224494712166194197254144000, 5040627715175514814159607456023227379139001458908168
Offset: 1

Views

Author

Mike Koss, Nov 26 2021

Keywords

Comments

The number of perfect mazes on an n X n grid of cells where rotations and reflections are not counted as distinct.
The sequence A007341 enumerates the same spanning trees or mazes but with duplicates due to symmetries of the square counted.
A lower bound for a(n) is the elements of A007341 divided by 8.
Terms can be computed using Burnside's lemma and Kirchhoff's matrix tree theorem applied to various graphs. See the PARI program link for technical details. - Andrew Howroyd, Nov 27 2021

Examples

			While there are 192 mazes on a 3 X 3 grid, only a(3) = 28 are distinct mod rotations and reflections.
21 are asymmetric:
    _____     _____     _____     _____     _____     _____     _____     _____
   |     |   |     |   |     |   |    _|   |    _|   |    _|   |    _|   |    _|
   | | |_|   | |_| |   | |_|_|   | |   |   | |  _|   | |_  |   | |_  |   | |_ _|
   |_|_ _|   |_ _|_|   |_ _ _|   |_|_|_|   |_|_ _|   |_ _|_|   |_|_ _|   |_ _ _|
    _____     _____     _____     _____     _____     _____     _____     _____
   |    _|   |    _|   |    _|   |    _|   |    _|   |  _  |   |  _  |   |  _  |
   |_|   |   |_|  _|   |_|_  |   | | | |   | |_| |   |_  | |   |_  |_|   |_ _| |
   |_ _|_|   |_ _ _|   |_ _ _|   |_|_ _|   |_ _ _|   |_ _|_|   |_ _ _|   |_ _ _|
    _____     _____     _____     _____     _____
   |  _ _|   |  _ _|   |_   _|   |_   _|   |_   _|
   |_    |   |_   _|   |    _|   |  _  |   |   | |
   |_ _|_|   |_ _ _|   |_|_ _|   |_ _|_|   |_|_ _|
.
5 have 2-way symmetry:
    _____     _____     _____     _____     _____
   |     |   |     |   |    _|   |  _ _|   |_   _|
   | | | |   |_| |_|   |_| | |   |_ _  |   |     |
   |_|_|_|   |_ _ _|   |_ _ _|   |_ _ _|   |_|_|_|
.
2 have 4-way symmetry:
    _____     _____
   |_   _|   |_  | |
   |_   _|   |    _|
   |_ _ _|   |_|_ _|
		

Crossrefs

Programs

Formula

a(n) ~ A007341(n) / 8; a(n) >= A007341(n) / 8.
a(2*n) = (A116469(2*n,2*n) + 4*n*A116469(2*n,n))/8. - Andrew Howroyd, Nov 27 2021

Extensions

Terms a(7) and beyond from Andrew Howroyd, Nov 27 2021

A375858 Array T(n,m) read by antidiagonals: In an n X m grid draw straight walls between cells, starting at a border, such that the resulting figure is connected and has only one-cell wide paths; T(n,m) is the number of solutions.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 26, 56, 26, 1, 1, 57, 212, 212, 57, 1, 1, 120, 701, 1112, 701, 120, 1, 1, 247, 2179, 4793, 4793, 2179, 247, 1, 1, 502, 6600, 19082, 25000, 19082, 6600, 502, 1, 1, 1013, 19808, 74368, 116852, 116852, 74368, 19808, 1013, 1
Offset: 1

Views

Author

Andrew Howroyd, Aug 31 2024

Keywords

Comments

See A375770 and A375817 for additional explanation and illustration of solutions.
This sequence counts a subset of the spanning trees enumerated in A116469.

Examples

			Array begins:
==================================================
n/m | 1   2    3     4      5       6        7 ...
----+---------------------------------------------
  1 | 1   1    1     1      1       1        1 ...
  2 | 1   4   11    26     57     120      247 ...
  3 | 1  11   56   212    701    2179     6600 ...
  4 | 1  26  212  1112   4793   19082    74368 ...
  5 | 1  57  701  4793  25000  116852   535776 ...
  6 | 1 120 2179 19082 116852  607712  3048668 ...
  7 | 1 247 6600 74368 535776 3048668 15918280 ...
  ...
		

Crossrefs

Main diagonal is A375817.

Programs

Formula

T(n,m) = T(m,n).
Previous Showing 11-20 of 25 results. Next