cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A176627 Triangle T(n, k) = 12^(k*(n-k)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 12, 1, 1, 144, 144, 1, 1, 1728, 20736, 1728, 1, 1, 20736, 2985984, 2985984, 20736, 1, 1, 248832, 429981696, 5159780352, 429981696, 248832, 1, 1, 2985984, 61917364224, 8916100448256, 8916100448256, 61917364224, 2985984, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 22 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,       1;
  1,      12,           1;
  1,     144,         144,             1;
  1,    1728,       20736,          1728,             1;
  1,   20736,     2985984,       2985984,         20736,           1;
  1,  248832,   429981696,    5159780352,     429981696,      248832,       1;
  1, 2985984, 61917364224, 8916100448256, 8916100448256, 61917364224, 2985984, 1;
		

Crossrefs

Cf. A000326,
Cf. A118190 (q=2), this sequence (q=3), A176631 (q=4).
Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), this sequence (m=10), A176639 (m=13), A156581 (m=15), A176643 (m=19), A176631 (m=20), A176641 (m=26).

Programs

  • Magma
    [(12)^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
    
  • Mathematica
    (* First program *)
    T[n_, k_, q_]= (Binomial[3*q,2]/3)^(k*(n-k));
    Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 30 2021 *)
    (* Second program *)
    With[{m=10}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
  • Sage
    flatten([[(12)^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021

Formula

T(n, k, q) = c(n, q)/(c(k, q)*c(n-k, q)), where c(n, k) = Product_{j=1..n} (q*(3*q - 1)/2)^j and q = 3.
T(n, k, q) = (binomial(3*q, 2)/3)^(k*(n-k)) with q = 3.
T(n, k, m) = (m+2)^(k*(n-k)) with m = 10. - G. C. Greubel, Jun 30 2021

Extensions

Edited by G. C. Greubel, Jun 30 2021

A176639 Triangle T(n, k) = 15^(k*(n-k)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 15, 1, 1, 225, 225, 1, 1, 3375, 50625, 3375, 1, 1, 50625, 11390625, 11390625, 50625, 1, 1, 759375, 2562890625, 38443359375, 2562890625, 759375, 1, 1, 11390625, 576650390625, 129746337890625, 129746337890625, 576650390625, 11390625, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 22 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,      1;
  1,     15,          1;
  1,    225,        225,           1;
  1,   3375,      50625,        3375,          1;
  1,  50625,   11390625,    11390625,      50625,      1;
  1, 759375, 2562890625, 38443359375, 2562890625, 759375, 1;
		

Crossrefs

Cf. A000384.
Cf. A158116 (q=2), this sequence (q=3), A176641 (q=4).
Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), A176627 (m=10), this sequence (m=13), A156581 (m=15), A176643 (m=19), A176631 (m=20), A176641 (m=26).

Programs

  • Magma
    [(15)^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
    
  • Mathematica
    (* First program *)
    T[n_, k_, q_] = Binomial[2*q, 2]^(k*(n-k));
    Table[T[n, k, 3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 30 2021 *)
    (* Second program *)
    With[{m=13}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
  • Sage
    flatten([[(15)^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021

Formula

T(n, k, q) = c(n,q)/(c(k, q)*c(n-k, q)) where c(n, k) = Product_{j=1..n} (q*(2*q - 1))^j and q = 3.
T(n, k, q) = binomial(2*q, 2)^(k*(n-k)) with q = 3.
T(n, k, m) = (m+2)^(k*(n-k)) with m = 13. - G. C. Greubel, Jun 30 2021

Extensions

Edited by G. C. Greubel, Jun 30 2021

A176642 Triangle T(n, k) = 8^(k*(n-k)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 64, 64, 1, 1, 512, 4096, 512, 1, 1, 4096, 262144, 262144, 4096, 1, 1, 32768, 16777216, 134217728, 16777216, 32768, 1, 1, 262144, 1073741824, 68719476736, 68719476736, 1073741824, 262144, 1, 1, 2097152, 68719476736, 35184372088832, 281474976710656, 35184372088832, 68719476736, 2097152, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 22 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,      1;
  1,      8,          1;
  1,     64,         64,           1;
  1,    512,       4096,         512,           1;
  1,   4096,     262144,      262144,        4096,          1;
  1,  32768,   16777216,   134217728,    16777216,      32768,      1;
  1, 262144, 1073741824, 68719476736, 68719476736, 1073741824, 262144, 1;
		

Crossrefs

Cf. this sequence (q=2), A176643 (q=3), A176644 (q=4).
Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), this sequence (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15), A176643 (m=19), A176631 (m=20), A176641 (m=26).

Programs

  • Magma
    [8^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
    
  • Mathematica
    T[n_, k_, q_]:= (q*(3*q-2))^(k*(n-k)); Table[T[n, k, 2], {n, 0, 12}, {k, 0, n}]//Flatten
    With[{m=6}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
  • Sage
    flatten([[8^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021

Formula

T(n, k, q) = c(n,q)/(c(k, q)*c(n-k, q)) where c(n, q) = (q*(3*q - 2))^binomial(n+1,2) and q = 2.
T(n, k, q) = (q*(3*q-2))^(k*(n-k)) with q = 2.
T(n, k) = 8^A004247(n,k), where A004247 is interpreted as a triangle. [relation detected by sequencedb.net]. - R. J. Mathar, Jun 30 2021
T(n, k, m) = (m+2)^(k*(n-k)) with m = 6. - G. C. Greubel, Jun 30 2021

Extensions

Edited by R. J. Mathar and G. C. Greubel, Jun 30 2021

A176631 Triangle T(n, k) = 22^(k*(n-k)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 22, 1, 1, 484, 484, 1, 1, 10648, 234256, 10648, 1, 1, 234256, 113379904, 113379904, 234256, 1, 1, 5153632, 54875873536, 1207269217792, 54875873536, 5153632, 1, 1, 113379904, 26559922791424, 12855002631049216, 12855002631049216, 26559922791424, 113379904, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 22 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,       1;
  1,      22,           1;
  1,     484,         484,             1;
  1,   10648,      234256,         10648,           1;
  1,  234256,   113379904,     113379904,      234256,       1;
  1, 5153632, 54875873536, 1207269217792, 54875873536, 5153632, 1;
		

Crossrefs

Cf. A000326.
Cf. A118190 (q=2), A176627 (q=3), this sequence (q=4).
Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15), A176643 (m=19), this sequence (m=20), A176641 (m=26), A176644 (m=38).

Programs

  • Magma
    [22^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 01 2021
    
  • Mathematica
    T[n_, k_, q_]= (Binomial[3*q,2]/3)^(k*(n-k)); Table[T[n,k,4], {n,0,12}, {k,0,n}]//Flatten
    Table[22^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 01 2021 *)
  • Sage
    flatten([[22^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 01 2021

Formula

T(n, k, q) = c(n, q)/(c(k, q)*c(n-k, q)), where c(n, k) = Product_{j=1..n} (q*(3*q - 1)/2)^j and q = 4.
T(n, k, q) = (binomial(3*q, 2)/3)^(k*(n-k)) with q = 4.
T(n, k, m) = (m+2)^(k*(n-k)) with m = 20. - G. C. Greubel, Jul 01 2021

Extensions

Edited by G. C. Greubel, Jul 01 2021

A176641 Triangle T(n, k) = 28^(k*(n-k)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 28, 1, 1, 784, 784, 1, 1, 21952, 614656, 21952, 1, 1, 614656, 481890304, 481890304, 614656, 1, 1, 17210368, 377801998336, 10578455953408, 377801998336, 17210368, 1, 1, 481890304, 296196766695424, 232218265089212416, 232218265089212416, 296196766695424, 481890304, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 22 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,        1;
  1,       28,            1;
  1,      784,          784,              1;
  1,    21952,       614656,          21952,            1;
  1,   614656,    481890304,      481890304,       614656,        1;
  1, 17210368, 377801998336, 10578455953408, 377801998336, 17210368, 1;
		

Crossrefs

Cf. A000384.
Cf. A158116 (q=2), A176639 (q=3), this sequence (q=4).
Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15), A176643 (m=19), A176631 (m=20), this sequence (m=26).
Cf. A007318 (p=0), A118180 (p=1), A158116 (p=2), A158117 (p=3), A176639 (p=4), A176643 (p=5), this sequence (p=6).

Programs

  • Magma
    [(28)^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
    
  • Mathematica
    T[n_, k_, q_] = Binomial[2*q, 2]^(k*(n-k));
    Table[T[n, k, 4], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 30 2021 *)
    With[{m=26}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
  • Sage
    flatten([[(28)^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021

Formula

T(n, k, q) = c(n,q)/(c(k, q)*c(n-k, q)) where c(n, k) = Product_{j=1..n} (q*(2*q - 1))^j and q = 4.
From G. C. Greubel, Jun 30 2021: (Start)
T(n, k, q) = binomial(2*q, 2)^(k*(n-k)) with q = 4.
T(n, k, m) = (m+2)^(k*(n-k)) with m = 26.
T(n, k, p) = binomial(p+2, 2)^(k*(n-k)) with p = 6. (End)

Extensions

Edited by G. C. Greubel, Jun 30 2021

A176643 Triangle T(n, k) = 21^(k*(n-k)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 21, 1, 1, 441, 441, 1, 1, 9261, 194481, 9261, 1, 1, 194481, 85766121, 85766121, 194481, 1, 1, 4084101, 37822859361, 794280046581, 37822859361, 4084101, 1, 1, 85766121, 16679880978201, 7355827511386641, 7355827511386641, 16679880978201, 85766121, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 22 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,       1;
  1,      21,           1;
  1,     441,         441,            1;
  1,    9261,      194481,         9261,           1;
  1,  194481,    85766121,     85766121,      194481,       1;
  1, 4084101, 37822859361, 794280046581, 37822859361, 4084101, 1;
		

Crossrefs

Cf. A000567.
Cf. A176642 (q=2), this sequence (q=3), A176644 (q=4).
Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15), this sequence (m=19), A176631 (m=20), A176641 (m=26).

Programs

  • Magma
    [(21)^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 01 2021
    
  • Mathematica
    T[n_, k_, q_]:= (q*(3*q-2))^(k*(n-k)); Table[T[n, k, 3], {n, 0, 12}, {k, 0, n}]//Flatten
    Table[21^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 01 2021 *)
  • Sage
    flatten([[(21)^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 01 2021

Formula

T(n, k, q) = c(n,q)/(c(k, q)*c(n-k, q)) where c(n, q) = (q*(3*q - 2))^binomial(n+1,2) and q = 3.
T(n, k, q) = (q*(3*q-2))^(k*(n-k)) with q = 3.
T(n, k, m) = (m+2)^(k*(n-k)) with m = 19. - G. C. Greubel, Jul 01 2021

Extensions

Edited by G. C. Greubel, Jul 01 2021

A344110 Triangle read by rows: T(n,k) = 2^(n*k), n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 2, 1, 4, 16, 1, 8, 64, 512, 1, 16, 256, 4096, 65536, 1, 32, 1024, 32768, 1048576, 33554432, 1, 64, 4096, 262144, 16777216, 1073741824, 68719476736, 1, 128, 16384, 2097152, 268435456, 34359738368, 4398046511104, 562949953421312
Offset: 0

Views

Author

Mohammad K. Azarian, May 10 2021

Keywords

Comments

T(n, k) is the number of relations from an n-element set into a k-element set, n >= 0, 0 <= k <= n.
T(n,k) is the size of the right principal ideal generated by A where A is an n X n matrix over GF(2) having rank k. The right principal ideal of A contains precisely the matrices whose image is contained in the image of A. - Geoffrey Critzer, Sep 25 2022

Examples

			T(3,3) = number of relations from a 3-element set into a 3-element set=2^(3*3)=512.
Triangle begins:
   1
   1   2
   1   4      16
   1   8      64      512
   1  16     256     4096      65536
   1  32    1024    32768    1048576    33554432
   ...
		

Crossrefs

Programs

  • Mathematica
    Table[2^(n*k), {n, 0, 10}, {k, 0, n}]

Formula

T(n,k) = 2^(n*k).
T(n,k) = Sum_{j=0..k} A288853(n,j)*A022166(n,j). - Geoffrey Critzer, Jan 02 2023

A368220 Table read by antidiagonals: T(n,k) is the number of tilings of the n X k grid up to horizontal and vertical reflections by an asymmetric tile.

Original entry on oeis.org

1, 6, 6, 16, 76, 16, 72, 1056, 1056, 72, 256, 16576, 65536, 16576, 256, 1056, 262656, 4196352, 4196352, 262656, 1056, 4096, 4197376, 268435456, 1073790976, 268435456, 4197376, 4096, 16512, 67117056, 17180000256, 274878431232, 274878431232, 17180000256, 67117056, 16512
Offset: 1

Views

Author

Peter Kagey, Dec 18 2023

Keywords

Examples

			Table begins:
  n\k |    1       2           3              4                  5
  ----+-----------------------------------------------------------
    1 |    1       6          16             72                256
    2 |    6      76        1056          16576             262656
    3 |   16    1056       65536        4196352          268435456
    4 |   72   16576     4196352     1073790976       274878431232
    5 |  256  262656   268435456   274878431232    281474976710656
    6 | 1056 4197376 17180000256 70368756760576 288230376688582656
		

Crossrefs

Programs

  • Mathematica
    A368220[n_, m_] := 2^(n*m - 2)*(2^(n*m) + Boole[EvenQ[n*m]] + Boole[EvenQ[n]] + Boole[EvenQ[m]])

A368222 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k grid up to horizontal reflection by an asymmetric tile.

Original entry on oeis.org

1, 2, 3, 4, 10, 4, 8, 36, 32, 10, 16, 136, 256, 136, 16, 32, 528, 2048, 2080, 512, 36, 64, 2080, 16384, 32896, 16384, 2080, 64, 128, 8256, 131072, 524800, 524288, 131328, 8192, 136, 256, 32896, 1048576, 8390656, 16777216, 8390656, 1048576, 32896, 256
Offset: 1

Views

Author

Peter Kagey, Dec 18 2023

Keywords

Examples

			Table begins:
  n\k|  1    2      3       4         5           6
  ---+---------------------------------------------
   1 |  1    2      4       8        16          32
   2 |  3   10     36     136       528        2080
   3 |  4   32    256    2048     16384      131072
   4 | 10  136   2080   32896    524800     8390656
   5 | 16  512  16384  524288  16777216   536870912
   6 | 36 2080 131328 8390656 536887296 34359869440
		

Crossrefs

Programs

  • Mathematica
    A368222[n_, m_] := 2^(n*m/2 - 1) (2^(n*m/2) + Boole[EvenQ[n]])

A368224 Table read by antidiagonals: T(n,k) is the number of tilings of the n X k grid up to 180-degree rotation by an asymmetric tile.

Original entry on oeis.org

1, 3, 3, 4, 10, 4, 10, 36, 36, 10, 16, 136, 256, 136, 16, 36, 528, 2080, 2080, 528, 36, 64, 2080, 16384, 32896, 16384, 2080, 64, 136, 8256, 131328, 524800, 524800, 131328, 8256, 136, 256, 32896, 1048576, 8390656, 16777216, 8390656, 1048576, 32896, 256
Offset: 1

Views

Author

Peter Kagey, Dec 18 2023

Keywords

Examples

			Table begins:
  n\k|  1    2      3       4         5           6
  ---+---------------------------------------------
   1 |  1    3      4      10        16          36
   2 |  3   10     36     136       528        2080
   3 |  4   36    256    2080     16384      131328
   4 | 10  136   2080   32896    524800     8390656
   5 | 16  528  16384  524800  16777216   536887296
   6 | 36 2080 131328 8390656 536887296 34359869440
		

Crossrefs

Programs

  • Mathematica
    A368224[n_, m_] := 2^(n*m/2 - 1) (2^(n*m/2) + Boole[EvenQ[n*m]])
Previous Showing 11-20 of 28 results. Next