A176627
Triangle T(n, k) = 12^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 12, 1, 1, 144, 144, 1, 1, 1728, 20736, 1728, 1, 1, 20736, 2985984, 2985984, 20736, 1, 1, 248832, 429981696, 5159780352, 429981696, 248832, 1, 1, 2985984, 61917364224, 8916100448256, 8916100448256, 61917364224, 2985984, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 12, 1;
1, 144, 144, 1;
1, 1728, 20736, 1728, 1;
1, 20736, 2985984, 2985984, 20736, 1;
1, 248832, 429981696, 5159780352, 429981696, 248832, 1;
1, 2985984, 61917364224, 8916100448256, 8916100448256, 61917364224, 2985984, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3),
A158116 (m=4),
A176642 (m=6),
A158117 (m=8), this sequence (m=10),
A176639 (m=13),
A156581 (m=15),
A176643 (m=19),
A176631 (m=20),
A176641 (m=26).
-
[(12)^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
-
(* First program *)
T[n_, k_, q_]= (Binomial[3*q,2]/3)^(k*(n-k));
Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 30 2021 *)
(* Second program *)
With[{m=10}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
-
flatten([[(12)^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021
A176639
Triangle T(n, k) = 15^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 15, 1, 1, 225, 225, 1, 1, 3375, 50625, 3375, 1, 1, 50625, 11390625, 11390625, 50625, 1, 1, 759375, 2562890625, 38443359375, 2562890625, 759375, 1, 1, 11390625, 576650390625, 129746337890625, 129746337890625, 576650390625, 11390625, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 15, 1;
1, 225, 225, 1;
1, 3375, 50625, 3375, 1;
1, 50625, 11390625, 11390625, 50625, 1;
1, 759375, 2562890625, 38443359375, 2562890625, 759375, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3),
A158116 (m=4),
A176642 (m=6),
A158117 (m=8),
A176627 (m=10), this sequence (m=13),
A156581 (m=15),
A176643 (m=19),
A176631 (m=20),
A176641 (m=26).
-
[(15)^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
-
(* First program *)
T[n_, k_, q_] = Binomial[2*q, 2]^(k*(n-k));
Table[T[n, k, 3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 30 2021 *)
(* Second program *)
With[{m=13}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
-
flatten([[(15)^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021
A176642
Triangle T(n, k) = 8^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 64, 64, 1, 1, 512, 4096, 512, 1, 1, 4096, 262144, 262144, 4096, 1, 1, 32768, 16777216, 134217728, 16777216, 32768, 1, 1, 262144, 1073741824, 68719476736, 68719476736, 1073741824, 262144, 1, 1, 2097152, 68719476736, 35184372088832, 281474976710656, 35184372088832, 68719476736, 2097152, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 8, 1;
1, 64, 64, 1;
1, 512, 4096, 512, 1;
1, 4096, 262144, 262144, 4096, 1;
1, 32768, 16777216, 134217728, 16777216, 32768, 1;
1, 262144, 1073741824, 68719476736, 68719476736, 1073741824, 262144, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3),
A158116 (m=4), this sequence (m=6),
A158117 (m=8),
A176627 (m=10),
A176639 (m=13),
A156581 (m=15),
A176643 (m=19),
A176631 (m=20),
A176641 (m=26).
-
[8^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
-
T[n_, k_, q_]:= (q*(3*q-2))^(k*(n-k)); Table[T[n, k, 2], {n, 0, 12}, {k, 0, n}]//Flatten
With[{m=6}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
-
flatten([[8^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021
A176631
Triangle T(n, k) = 22^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 22, 1, 1, 484, 484, 1, 1, 10648, 234256, 10648, 1, 1, 234256, 113379904, 113379904, 234256, 1, 1, 5153632, 54875873536, 1207269217792, 54875873536, 5153632, 1, 1, 113379904, 26559922791424, 12855002631049216, 12855002631049216, 26559922791424, 113379904, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 22, 1;
1, 484, 484, 1;
1, 10648, 234256, 10648, 1;
1, 234256, 113379904, 113379904, 234256, 1;
1, 5153632, 54875873536, 1207269217792, 54875873536, 5153632, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3),
A158116 (m=4),
A176642 (m=6),
A158117 (m=8),
A176627 (m=10),
A176639 (m=13),
A156581 (m=15),
A176643 (m=19), this sequence (m=20),
A176641 (m=26),
A176644 (m=38).
-
[22^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 01 2021
-
T[n_, k_, q_]= (Binomial[3*q,2]/3)^(k*(n-k)); Table[T[n,k,4], {n,0,12}, {k,0,n}]//Flatten
Table[22^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 01 2021 *)
-
flatten([[22^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 01 2021
A176641
Triangle T(n, k) = 28^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 28, 1, 1, 784, 784, 1, 1, 21952, 614656, 21952, 1, 1, 614656, 481890304, 481890304, 614656, 1, 1, 17210368, 377801998336, 10578455953408, 377801998336, 17210368, 1, 1, 481890304, 296196766695424, 232218265089212416, 232218265089212416, 296196766695424, 481890304, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 28, 1;
1, 784, 784, 1;
1, 21952, 614656, 21952, 1;
1, 614656, 481890304, 481890304, 614656, 1;
1, 17210368, 377801998336, 10578455953408, 377801998336, 17210368, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3),
A158116 (m=4),
A176642 (m=6),
A158117 (m=8),
A176627 (m=10),
A176639 (m=13),
A156581 (m=15),
A176643 (m=19),
A176631 (m=20), this sequence (m=26).
-
[(28)^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
-
T[n_, k_, q_] = Binomial[2*q, 2]^(k*(n-k));
Table[T[n, k, 4], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 30 2021 *)
With[{m=26}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
-
flatten([[(28)^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021
A176643
Triangle T(n, k) = 21^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 21, 1, 1, 441, 441, 1, 1, 9261, 194481, 9261, 1, 1, 194481, 85766121, 85766121, 194481, 1, 1, 4084101, 37822859361, 794280046581, 37822859361, 4084101, 1, 1, 85766121, 16679880978201, 7355827511386641, 7355827511386641, 16679880978201, 85766121, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 21, 1;
1, 441, 441, 1;
1, 9261, 194481, 9261, 1;
1, 194481, 85766121, 85766121, 194481, 1;
1, 4084101, 37822859361, 794280046581, 37822859361, 4084101, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3),
A158116 (m=4),
A176642 (m=6),
A158117 (m=8),
A176627 (m=10),
A176639 (m=13),
A156581 (m=15), this sequence (m=19),
A176631 (m=20),
A176641 (m=26).
-
[(21)^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 01 2021
-
T[n_, k_, q_]:= (q*(3*q-2))^(k*(n-k)); Table[T[n, k, 3], {n, 0, 12}, {k, 0, n}]//Flatten
Table[21^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 01 2021 *)
-
flatten([[(21)^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 01 2021
A344110
Triangle read by rows: T(n,k) = 2^(n*k), n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 1, 2, 1, 4, 16, 1, 8, 64, 512, 1, 16, 256, 4096, 65536, 1, 32, 1024, 32768, 1048576, 33554432, 1, 64, 4096, 262144, 16777216, 1073741824, 68719476736, 1, 128, 16384, 2097152, 268435456, 34359738368, 4398046511104, 562949953421312
Offset: 0
T(3,3) = number of relations from a 3-element set into a 3-element set=2^(3*3)=512.
Triangle begins:
1
1 2
1 4 16
1 8 64 512
1 16 256 4096 65536
1 32 1024 32768 1048576 33554432
...
-
Table[2^(n*k), {n, 0, 10}, {k, 0, n}]
A368220
Table read by antidiagonals: T(n,k) is the number of tilings of the n X k grid up to horizontal and vertical reflections by an asymmetric tile.
Original entry on oeis.org
1, 6, 6, 16, 76, 16, 72, 1056, 1056, 72, 256, 16576, 65536, 16576, 256, 1056, 262656, 4196352, 4196352, 262656, 1056, 4096, 4197376, 268435456, 1073790976, 268435456, 4197376, 4096, 16512, 67117056, 17180000256, 274878431232, 274878431232, 17180000256, 67117056, 16512
Offset: 1
Table begins:
n\k | 1 2 3 4 5
----+-----------------------------------------------------------
1 | 1 6 16 72 256
2 | 6 76 1056 16576 262656
3 | 16 1056 65536 4196352 268435456
4 | 72 16576 4196352 1073790976 274878431232
5 | 256 262656 268435456 274878431232 281474976710656
6 | 1056 4197376 17180000256 70368756760576 288230376688582656
- Peter Kagey, Illustration of T(2,2)=76
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023. See also J. Int. Seq., (2024) Vol. 27, Art. No. 24.6.1, pp. A-1, A-3.
A368222
Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k grid up to horizontal reflection by an asymmetric tile.
Original entry on oeis.org
1, 2, 3, 4, 10, 4, 8, 36, 32, 10, 16, 136, 256, 136, 16, 32, 528, 2048, 2080, 512, 36, 64, 2080, 16384, 32896, 16384, 2080, 64, 128, 8256, 131072, 524800, 524288, 131328, 8192, 136, 256, 32896, 1048576, 8390656, 16777216, 8390656, 1048576, 32896, 256
Offset: 1
Table begins:
n\k| 1 2 3 4 5 6
---+---------------------------------------------
1 | 1 2 4 8 16 32
2 | 3 10 36 136 528 2080
3 | 4 32 256 2048 16384 131072
4 | 10 136 2080 32896 524800 8390656
5 | 16 512 16384 524288 16777216 536870912
6 | 36 2080 131328 8390656 536887296 34359869440
A368224
Table read by antidiagonals: T(n,k) is the number of tilings of the n X k grid up to 180-degree rotation by an asymmetric tile.
Original entry on oeis.org
1, 3, 3, 4, 10, 4, 10, 36, 36, 10, 16, 136, 256, 136, 16, 36, 528, 2080, 2080, 528, 36, 64, 2080, 16384, 32896, 16384, 2080, 64, 136, 8256, 131328, 524800, 524800, 131328, 8256, 136, 256, 32896, 1048576, 8390656, 16777216, 8390656, 1048576, 32896, 256
Offset: 1
Table begins:
n\k| 1 2 3 4 5 6
---+---------------------------------------------
1 | 1 3 4 10 16 36
2 | 3 10 36 136 528 2080
3 | 4 36 256 2080 16384 131328
4 | 10 136 2080 32896 524800 8390656
5 | 16 528 16384 524800 16777216 536887296
6 | 36 2080 131328 8390656 536887296 34359869440
Comments