A176627
Triangle T(n, k) = 12^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 12, 1, 1, 144, 144, 1, 1, 1728, 20736, 1728, 1, 1, 20736, 2985984, 2985984, 20736, 1, 1, 248832, 429981696, 5159780352, 429981696, 248832, 1, 1, 2985984, 61917364224, 8916100448256, 8916100448256, 61917364224, 2985984, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 12, 1;
1, 144, 144, 1;
1, 1728, 20736, 1728, 1;
1, 20736, 2985984, 2985984, 20736, 1;
1, 248832, 429981696, 5159780352, 429981696, 248832, 1;
1, 2985984, 61917364224, 8916100448256, 8916100448256, 61917364224, 2985984, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3),
A158116 (m=4),
A176642 (m=6),
A158117 (m=8), this sequence (m=10),
A176639 (m=13),
A156581 (m=15),
A176643 (m=19),
A176631 (m=20),
A176641 (m=26).
-
[(12)^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
-
(* First program *)
T[n_, k_, q_]= (Binomial[3*q,2]/3)^(k*(n-k));
Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 30 2021 *)
(* Second program *)
With[{m=10}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
-
flatten([[(12)^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021
A176639
Triangle T(n, k) = 15^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 15, 1, 1, 225, 225, 1, 1, 3375, 50625, 3375, 1, 1, 50625, 11390625, 11390625, 50625, 1, 1, 759375, 2562890625, 38443359375, 2562890625, 759375, 1, 1, 11390625, 576650390625, 129746337890625, 129746337890625, 576650390625, 11390625, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 15, 1;
1, 225, 225, 1;
1, 3375, 50625, 3375, 1;
1, 50625, 11390625, 11390625, 50625, 1;
1, 759375, 2562890625, 38443359375, 2562890625, 759375, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3),
A158116 (m=4),
A176642 (m=6),
A158117 (m=8),
A176627 (m=10), this sequence (m=13),
A156581 (m=15),
A176643 (m=19),
A176631 (m=20),
A176641 (m=26).
-
[(15)^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
-
(* First program *)
T[n_, k_, q_] = Binomial[2*q, 2]^(k*(n-k));
Table[T[n, k, 3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 30 2021 *)
(* Second program *)
With[{m=13}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
-
flatten([[(15)^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021
A176642
Triangle T(n, k) = 8^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 64, 64, 1, 1, 512, 4096, 512, 1, 1, 4096, 262144, 262144, 4096, 1, 1, 32768, 16777216, 134217728, 16777216, 32768, 1, 1, 262144, 1073741824, 68719476736, 68719476736, 1073741824, 262144, 1, 1, 2097152, 68719476736, 35184372088832, 281474976710656, 35184372088832, 68719476736, 2097152, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 8, 1;
1, 64, 64, 1;
1, 512, 4096, 512, 1;
1, 4096, 262144, 262144, 4096, 1;
1, 32768, 16777216, 134217728, 16777216, 32768, 1;
1, 262144, 1073741824, 68719476736, 68719476736, 1073741824, 262144, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3),
A158116 (m=4), this sequence (m=6),
A158117 (m=8),
A176627 (m=10),
A176639 (m=13),
A156581 (m=15),
A176643 (m=19),
A176631 (m=20),
A176641 (m=26).
-
[8^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
-
T[n_, k_, q_]:= (q*(3*q-2))^(k*(n-k)); Table[T[n, k, 2], {n, 0, 12}, {k, 0, n}]//Flatten
With[{m=6}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
-
flatten([[8^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021
A176631
Triangle T(n, k) = 22^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 22, 1, 1, 484, 484, 1, 1, 10648, 234256, 10648, 1, 1, 234256, 113379904, 113379904, 234256, 1, 1, 5153632, 54875873536, 1207269217792, 54875873536, 5153632, 1, 1, 113379904, 26559922791424, 12855002631049216, 12855002631049216, 26559922791424, 113379904, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 22, 1;
1, 484, 484, 1;
1, 10648, 234256, 10648, 1;
1, 234256, 113379904, 113379904, 234256, 1;
1, 5153632, 54875873536, 1207269217792, 54875873536, 5153632, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3),
A158116 (m=4),
A176642 (m=6),
A158117 (m=8),
A176627 (m=10),
A176639 (m=13),
A156581 (m=15),
A176643 (m=19), this sequence (m=20),
A176641 (m=26),
A176644 (m=38).
-
[22^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 01 2021
-
T[n_, k_, q_]= (Binomial[3*q,2]/3)^(k*(n-k)); Table[T[n,k,4], {n,0,12}, {k,0,n}]//Flatten
Table[22^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 01 2021 *)
-
flatten([[22^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 01 2021
A176641
Triangle T(n, k) = 28^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 28, 1, 1, 784, 784, 1, 1, 21952, 614656, 21952, 1, 1, 614656, 481890304, 481890304, 614656, 1, 1, 17210368, 377801998336, 10578455953408, 377801998336, 17210368, 1, 1, 481890304, 296196766695424, 232218265089212416, 232218265089212416, 296196766695424, 481890304, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 28, 1;
1, 784, 784, 1;
1, 21952, 614656, 21952, 1;
1, 614656, 481890304, 481890304, 614656, 1;
1, 17210368, 377801998336, 10578455953408, 377801998336, 17210368, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3),
A158116 (m=4),
A176642 (m=6),
A158117 (m=8),
A176627 (m=10),
A176639 (m=13),
A156581 (m=15),
A176643 (m=19),
A176631 (m=20), this sequence (m=26).
-
[(28)^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
-
T[n_, k_, q_] = Binomial[2*q, 2]^(k*(n-k));
Table[T[n, k, 4], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 30 2021 *)
With[{m=26}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
-
flatten([[(28)^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021
A176643
Triangle T(n, k) = 21^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 21, 1, 1, 441, 441, 1, 1, 9261, 194481, 9261, 1, 1, 194481, 85766121, 85766121, 194481, 1, 1, 4084101, 37822859361, 794280046581, 37822859361, 4084101, 1, 1, 85766121, 16679880978201, 7355827511386641, 7355827511386641, 16679880978201, 85766121, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 21, 1;
1, 441, 441, 1;
1, 9261, 194481, 9261, 1;
1, 194481, 85766121, 85766121, 194481, 1;
1, 4084101, 37822859361, 794280046581, 37822859361, 4084101, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3),
A158116 (m=4),
A176642 (m=6),
A158117 (m=8),
A176627 (m=10),
A176639 (m=13),
A156581 (m=15), this sequence (m=19),
A176631 (m=20),
A176641 (m=26).
-
[(21)^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 01 2021
-
T[n_, k_, q_]:= (q*(3*q-2))^(k*(n-k)); Table[T[n, k, 3], {n, 0, 12}, {k, 0, n}]//Flatten
Table[21^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 01 2021 *)
-
flatten([[(21)^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 01 2021
A176644
Triangle T(n, k) = 40^(k*(n-k)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 40, 1, 1, 1600, 1600, 1, 1, 64000, 2560000, 64000, 1, 1, 2560000, 4096000000, 4096000000, 2560000, 1, 1, 102400000, 6553600000000, 262144000000000, 6553600000000, 102400000, 1, 1, 4096000000, 10485760000000000, 16777216000000000000, 16777216000000000000, 10485760000000000, 4096000000, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 40, 1;
1, 1600, 1600, 1;
1, 64000, 2560000, 64000, 1;
1, 2560000, 4096000000, 4096000000, 2560000, 1;
1, 102400000, 6553600000000, 262144000000000, 6553600000000, 102400000, 1;
Cf.
A117401 (m=0),
A118180 (m=1),
A118185 (m=2),
A118190 (m=3),
A158116 (m=4),
A176642 (m=6),
A158117 (m=8),
A176627 (m=10),
A176639 (m=13),
A156581 (m=15),
A176643 (m=19),
A176631 (m=20),
A176641 (m=26), this sequence (m=38).
-
[40^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 01 2021
-
T[n_, k_, q_]:= (q*(3*q-2))^(k*(n-k)); Table[T[n, k, 4], {n, 0, 12}, {k, 0, n}]//Flatten
Table[(40)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 01 2021 *)
-
flatten([[40^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 01 2021
A378666
Triangular array read by rows: T(n,k) is the number of n X n idempotent matrices over GF(3) having rank k, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 1, 12, 1, 1, 117, 117, 1, 1, 1080, 10530, 1080, 1, 1, 9801, 882090, 882090, 9801, 1, 1, 88452, 72243171, 666860040, 72243171, 88452, 1, 1, 796797, 5873190687, 491992666011, 491992666011, 5873190687, 796797, 1, 1, 7173360, 476309310660, 360089838858960, 3267815287645062, 360089838858960, 476309310660, 7173360, 1
Offset: 0
Triangle T(n,k) begins:
1;
1, 1;
1, 12, 1;
1, 117, 117, 1;
1, 1080, 10530, 1080, 1;
1, 9801, 882090, 882090, 9801, 1;
...
-
b:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
`if`(n=0, 1, b(n-1, k-1)+3^k*b(n-1, k)))
end:
T:= (n,k)-> 3^(k*(n-k))*b(n, k):
seq(seq(T(n,k), k=0..n), n=0..8); # Alois P. Heinz, Dec 02 2024
-
nn = 8; \[Gamma][n_, q_] := Product[q^n - q^i, {i, 0, n - 1}]; B[n_, q_] := \[Gamma][n, q]/(q - 1)^n; \[Zeta][x_] := Sum[x^n/B[n, 3], {n, 0, nn}];Map[Select[#, # > 0 &] &, Table[B[n, 3], {n,0,nn}]*CoefficientList[Series[\[Zeta][x] \[Zeta][y x], {x, 0, nn}], {x, y}]] // Flatten
A156582
Square array T(n, k) = (k+2)^binomial(n, 2) with T(n, 0) = n!, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 27, 24, 1, 1, 5, 64, 729, 120, 1, 1, 6, 125, 4096, 59049, 720, 1, 1, 7, 216, 15625, 1048576, 14348907, 5040, 1, 1, 8, 343, 46656, 9765625, 1073741824, 10460353203, 40320, 1, 1, 9, 512, 117649, 60466176, 30517578125, 4398046511104, 22876792454961, 362880
Offset: 0
Square array begins as:
1, 1, 1, 1, 1, 1 ...;
1, 1, 1, 1, 1, 1 ...;
2, 3, 4, 5, 6, 7 ...;
6, 27, 64, 125, 216, 343 ...;
24, 729, 4096, 15625, 46656, 117649 ...;
120, 59049, 1048576, 9765625, 60466176, 282475249 ...;
Antidiagonal triangle begins as:
1;
1, 1;
1, 1, 2;
1, 1, 3, 6;
1, 1, 4, 27, 24;
1, 1, 5, 64, 729, 120;
1, 1, 6, 125, 4096, 59049, 720;
1, 1, 7, 216, 15625, 1048576, 14348907, 5040;
1, 1, 8, 343, 46656, 9765625, 1073741824, 10460353203, 40320;
-
A156582:= func< n,k | k eq 0 select Factorial(n) else (k+2)^Binomial(n,2) >;
[A156582(k,n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 28 2021
-
(* First program *)
T[n_, k_]:= If[k==0, n!, Product[Sum[Binomial[j-1,i]*(k+1)^i, {i,0,j-1}], {j,n}]];
Table[T[k, n-k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 28 2021 *)
(* Second program *)
T[n_, k_]:= If[k==0, n!, (k+2)^Binomial[n, 2]];
Table[T[k, n-k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 28 2021 *)
-
def A156582(n,k): return factorial(n) if (k==0) else (k+2)^binomial(n,2)
flatten([[A156582(k,n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 28 2021
Comments