cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 255 results. Next

A354584 Irregular triangle read by rows where row k lists the run-sums of the multiset (weakly increasing sequence) of prime indices of n.

Original entry on oeis.org

1, 2, 2, 3, 1, 2, 4, 3, 4, 1, 3, 5, 2, 2, 6, 1, 4, 2, 3, 4, 7, 1, 4, 8, 2, 3, 2, 4, 1, 5, 9, 3, 2, 6, 1, 6, 6, 2, 4, 10, 1, 2, 3, 11, 5, 2, 5, 1, 7, 3, 4, 2, 4, 12, 1, 8, 2, 6, 3, 3, 13, 1, 2, 4, 14, 2, 5, 4, 3, 1, 9, 15, 4, 2, 8, 1, 6, 2, 7, 2, 6, 16
Offset: 1

Views

Author

Gus Wiseman, Jun 17 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			Triangle begins:
  .
  1
  2
  2
  3
  1 2
  4
  3
  4
  1 3
  5
  2 2
  6
  1 4
  2 3
For example, the prime indices of 630 are {1,2,2,3,4}, so row 630 is (1,4,3,4).
		

Crossrefs

Positions of first appearances are A308495 plus 1.
The version for compositions is A353932, ranked by A353847.
Classes:
- singleton rows: A000961
- constant rows: A353833, nonprime A353834, counted by A304442
- strict rows: A353838, counted by A353837, complement A353839
Statistics:
- row lengths: A001221
- row sums: A056239
- row products: A304117
- row ranks (as partitions): A353832
- row image sizes: A353835
- row maxima: A353862
- row minima: A353931
A001222 counts prime factors with multiplicity.
A112798 and A296150 list partitions by rank.
A124010 gives prime signature, sorted A118914.
A300273 ranks collapsible partitions, counted by A275870.
A353840-A353846 pertain to partition run-sum trajectory.
A353861 counts distinct sums of partial runs of prime indices.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    Table[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>PrimePi[p]*k],{n,30}]

A353866 Heinz numbers of rucksack partitions. Every prime-power divisor has a different sum of prime indices.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
In a knapsack partition (A108917, ranked by A299702), every submultiset has a different sum, so these are run-knapsack partitions or rucksack partitions for short.

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    6: {1,2}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   15: {2,3}
   16: {1,1,1,1}
The sequence contains 18 because its prime-power divisors {1,2,3,9} have prime indices {}, {1}, {2}, {2,2} with distinct sums {0,1,2,4}. On the other hand, 12 is not in the sequence because {2} and {1,1} have the same sum.
		

Crossrefs

Knapsack partitions are counted by A108917, ranked by A299702.
The strong case is A353838, counted by A353837, complement A353839.
These partitions are counted by A353864.
The complete case is A353867, counted by A353865.
The complement is A354583.
A000041 counts partitions, strict A000009.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A073093 counts prime-power divisors.
A124010 gives prime signature, sorted A118914.
A300273 ranks collapsible partitions, counted by A275870.
A353832 represents the operation of taking run-sums of a partition.
A353836 counts partitions by number of distinct run-sums.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353863 counts partitions whose weak run-sums cover an initial interval.

Programs

  • Mathematica
    msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]];
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],UnsameQ@@Total/@Select[msubs[primeMS[#]],SameQ@@#&]&]

A336416 Number of perfect-power divisors of n!.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 7, 7, 11, 18, 36, 36, 47, 47, 84, 122, 166, 166, 221, 221, 346, 416, 717, 717, 1001, 1360, 2513, 2942, 4652, 4652, 5675, 5675, 6507, 6980, 13892, 17212, 20408, 20408, 39869, 45329, 51018, 51018, 68758, 68758, 105573, 138617, 284718, 284718, 338126, 421126
Offset: 0

Views

Author

Gus Wiseman, Jul 22 2020

Keywords

Comments

A number is a perfect power iff it is 1 or its prime exponents (signature) are not relatively prime.

Examples

			The a(1) = 0 through a(9) = 18 divisors:
       1: 1
       2: 1
       6: 1
      24: 1,4,8
     120: 1,4,8
     720: 1,4,8,9,16,36,144
    5040: 1,4,8,9,16,36,144
   40320: 1,4,8,9,16,32,36,64,128,144,576
  362880: 1,4,8,9,16,27,32,36,64,81,128,144,216,324,576,1296,1728,5184
		

Crossrefs

The maximum among these divisors is A090630, with quotient A251753.
The version for distinct prime exponents is A336414.
The uniform version is A336415.
Replacing factorials with Chernoff numbers (A006939) gives A336417.
Prime powers are A000961.
Perfect powers are A001597, with complement A007916.
Prime power divisors are counted by A022559.

Programs

  • Mathematica
    perpouQ[n_]:=Or[n==1,GCD@@FactorInteger[n][[All,2]]>1];
    Table[Length[Select[Divisors[n!],perpouQ]],{n,0,15}]
  • PARI
    a(n) = sumdiv(n!, d, (d==1) || ispower(d)); \\ Michel Marcus, Aug 19 2020
    
  • PARI
    addhelp(val, "exponent of prime p in n!")
    val(n, p) = my(r=0); while(n, r+=n\=p);r
    a(n) = {if(n<=3, return(1)); my(pr = primes(primepi(n\2)), v = vector(#pr, i, val(n, pr[i])), res = 1, cv); for(i = 2, v[1], if(issquarefree(i), cv = v\i; res-=(prod(i = 1, #cv, cv[i]+1)-1)*(-1)^omega(i) ) ); res } \\ David A. Corneth, Aug 19 2020

Formula

a(p) = a(p-1) for prime p. - David A. Corneth, Aug 19 2020

Extensions

a(26)-a(34) from Jinyuan Wang, Aug 19 2020
a(35)-a(49) from David A. Corneth, Aug 19 2020

A353839 Numbers whose prime indices do not have all distinct run-sums.

Original entry on oeis.org

12, 40, 60, 63, 84, 112, 120, 126, 132, 144, 156, 204, 228, 252, 276, 280, 300, 315, 325, 336, 348, 351, 352, 360, 372, 420, 440, 444, 492, 504, 516, 520, 560, 564, 588, 630, 636, 650, 660, 675, 680, 693, 702, 708, 720, 732, 760, 780, 804, 819, 832, 840, 852
Offset: 1

Views

Author

Gus Wiseman, Jun 04 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			The terms together with their prime indices begin:
   12: {1,1,2}
   40: {1,1,1,3}
   60: {1,1,2,3}
   63: {2,2,4}
   84: {1,1,2,4}
  112: {1,1,1,1,4}
  120: {1,1,1,2,3}
  126: {1,2,2,4}
  132: {1,1,2,5}
  144: {1,1,1,1,2,2}
  156: {1,1,2,6}
  204: {1,1,2,7}
  228: {1,1,2,8}
  252: {1,1,2,2,4}
  276: {1,1,2,9}
  280: {1,1,1,3,4}
  300: {1,1,2,3,3}
  315: {2,2,3,4}
		

Crossrefs

For equal run-sums we have A353833, counted by A304442, nonprime A353834.
The complement is A353838, counted by A353837.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A098859 counts partitions with distinct multiplicities, ranked by A130091.
A165413 counts distinct run-sums in binary expansion.
A300273 ranks collapsible partitions, counted by A275870.
A351014 counts distinct runs in standard compositions.
A353832 represents taking run-sums of a partition, compositions A353847.
A353840-A353846 pertain to partition run-sum trajectory.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353862 gives the greatest run-sum of prime indices, least A353931.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    Select[Range[100],!UnsameQ@@Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]&]

A109297 Primal codes of finite permutations on positive integers.

Original entry on oeis.org

1, 2, 9, 12, 18, 40, 112, 125, 250, 352, 360, 540, 600, 675, 832, 1008, 1125, 1350, 1500, 2176, 2250, 2268, 2352, 2401, 3168, 3969, 4802, 4864, 7488, 7938, 10692, 11616, 11776, 14000, 19584, 21609, 27440, 28812, 29403, 29696, 32448, 35000, 37908, 43218, 43776
Offset: 1

Views

Author

Jon Awbrey, Jul 08 2005

Keywords

Comments

A finite permutation is a bijective mapping from a finite set to itself, counting the empty mapping as a permutation of the empty set.
Also Heinz numbers of integer partitions where the set of distinct parts is equal to the set of distinct multiplicities. These partitions are counted by A114640. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Apr 02 2019

Examples

			Writing (prime(i))^j as i:j, we have the following table:
Primal Codes of Finite Permutations on Positive Integers
` ` ` 1 = { }
` ` ` 2 = 1:1
` ` ` 9 = 2:2
` ` `12 = 1:2 2:1
` ` `18 = 1:1 2:2
` ` `40 = 1:3 3:1
` ` 112 = 1:4 4:1
` ` 125 = 3:3
` ` 250 = 1:1 3:3
` ` 352 = 1:5 5:1
` ` 360 = 1:3 2:2 3:1
` ` 540 = 1:2 2:3 3:1
` ` 600 = 1:3 2:1 3:2
` ` 675 = 2:3 3:2
` ` 832 = 1:6 6:1
` `1008 = 1:4 2:2 4:1
` `1125 = 2:2 3:3
` `1350 = 1:1 2:3 3:2
` `1500 = 1:2 2:1 3:3
` `2176 = 1:7 7:1
` `2250 = 1:1 2:2 3:3
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k; for k from 1+`if`(n=1, 0,
          a(n-1)) while (l-> sort(map(i-> i[2], l)) <> sort(map(
          i-> numtheory[pi](i[1]), l)))(ifactors(k)[2]) do od; k
        end:
    seq(a(n), n=1..45);  # Alois P. Heinz, Mar 08 2019
  • Mathematica
    Select[Range[1000],#==1||Union[PrimePi/@First/@FactorInteger[#]]==Union[Last/@FactorInteger[#]]&] (* Gus Wiseman, Apr 02 2019 *)
  • PARI
    is(n) = {my(f = factor(n), p = f[,1], e = vecsort(f[,2])); for(i=1, #p, if(primepi(p[i]) != e[i], return(0))); 1}; \\ Amiram Eldar, Jul 30 2022

Extensions

More terms from Franklin T. Adams-Watters, Dec 19 2005
Offset set to 1 by Alois P. Heinz, Mar 08 2019

A325249 Sum of the omega-sequence of n.

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 1, 4, 3, 5, 1, 8, 1, 5, 5, 5, 1, 8, 1, 8, 5, 5, 1, 9, 3, 5, 4, 8, 1, 7, 1, 6, 5, 5, 5, 7, 1, 5, 5, 9, 1, 7, 1, 8, 8, 5, 1, 10, 3, 8, 5, 8, 1, 9, 5, 9, 5, 5, 1, 12, 1, 5, 8, 7, 5, 7, 1, 8, 5, 7, 1, 10, 1, 5, 8, 8, 5, 7, 1, 10, 5, 5, 1, 12, 5
Offset: 1

Views

Author

Gus Wiseman, Apr 16 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).

Examples

			The omega-sequence of 180 is (5,3,2,2,1) with sum 13, so a(180) = 13.
		

Crossrefs

Positions of m's are A000040 (m = 1), A001248 (m = 3), A030078 (m = 4), A068993 (m = 5), A050997 (m = 6), A325264 (m = 7).
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Table[Total[omseq[n]],{n,100}]

Formula

a(n) = A056239(A325248(n)).
a(n!) = A325274(n).

A352822 Number of fixed points y(i) = i, where y is the weakly increasing sequence of prime indices of n.

Original entry on oeis.org

0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 1, 1, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 2, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 1, 2, 0, 2, 0, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 6500 are {1,1,3,3,3,6} with fixed points at positions {1,3,6}, so a(6500) = 3.
		

Crossrefs

* = unproved
Positions of first appearances are A002110.
The triangle version is A238352.
Positions of 0's are A352830, counted by A238394.
Positions of 1's are A352831, counted by A352832.
A version for compositions is A352512, complement A352513, triangle A238349.
The complement is A352823.
The reverse version is A352824, complement A352825.
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
*A001522 counts partitions with a fixed point, ranked by A352827.
A056239 adds up prime indices, row sums of A112798 and A296150.
*A064428 counts partitions without a fixed point, ranked by A352826.
A122111 represents partition conjugation using Heinz numbers.
A124010 gives prime signature, sorted A118914, conjugate rank A238745.
A115720 and A115994 count partitions by their Durfee square.
A238395 counts reversed partitions with a fixed point, ranked by A352872.

Programs

  • Maple
    f:= proc(n) local F,J,t;
      F:= sort(ifactors(n)[2],(s,t) -> s[1] numtheory:-pi(t[1])$t[2], F);
      nops(select(t -> J[t]=t, [$1..nops(J)]));
    end proc:
    map(f, [$1..200]); # Robert Israel, Apr 11 2023
  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Table[pq[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]],{n,100}]
  • PARI
    A352822(n) = { my(f=factor(n),i=0,c=0); for(k=1,#f~,while(f[k,2], f[k,2]--; i++; c += (i==primepi(f[k,1])))); (c); }; \\ Antti Karttunen, Apr 11 2022

Formula

a(n) = A001222(n) - A352823(n). - Antti Karttunen, Apr 11 2022

Extensions

Data section extended up to 105 terms by Antti Karttunen, Apr 11 2022

A352827 Heinz numbers of integer partitions y with a fixed point y(i) = i. Such a fixed point is unique if it exists.

Original entry on oeis.org

2, 4, 8, 9, 15, 16, 18, 21, 27, 30, 32, 33, 36, 39, 42, 45, 51, 54, 57, 60, 63, 64, 66, 69, 72, 78, 81, 84, 87, 90, 93, 99, 102, 108, 111, 114, 117, 120, 123, 125, 126, 128, 129, 132, 135, 138, 141, 144, 153, 156, 159, 162, 168, 171, 174, 175, 177, 180, 183
Offset: 1

Views

Author

Gus Wiseman, Apr 06 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
    2: (1)
    4: (1,1)
    8: (1,1,1)
    9: (2,2)
   15: (3,2)
   16: (1,1,1,1)
   18: (2,2,1)
   21: (4,2)
   27: (2,2,2)
   30: (3,2,1)
   32: (1,1,1,1,1)
   33: (5,2)
   36: (2,2,1,1)
   39: (6,2)
   42: (4,2,1)
   45: (3,2,2)
   51: (7,2)
   54: (2,2,2,1)
For example, the partition (3,2,2) with Heinz number 45 has a fixed point at position 2, so 45 is in the sequence.
		

Crossrefs

* = unproved
*These partitions are counted by A001522, strict A352829.
*The complement is A352826, counted by A064428.
The complement reverse version is A352830, counted by A238394.
The reverse version is A352872, counted by A238395
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
A008290 counts permutations by fixed points, unfixed A098825.
A056239 adds up prime indices, row sums of A112798 and A296150.
A115720 and A115994 count partitions by their Durfee square.
A122111 represents partition conjugation using Heinz numbers.
A124010 gives prime signature, sorted A118914, conjugate rank A238745.
A238349 counts compositions by fixed points, complement A352523.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A352828 counts strict partitions without a fixed point.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Select[Range[100],pq[Reverse[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]==1&]

A353861 Number of distinct weak run-sums of the prime indices of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 3, 2, 3, 3, 5, 2, 4, 2, 4, 3, 3, 2, 4, 3, 3, 4, 4, 2, 4, 2, 6, 3, 3, 3, 4, 2, 3, 3, 4, 2, 4, 2, 4, 4, 3, 2, 5, 3, 4, 3, 4, 2, 5, 3, 5, 3, 3, 2, 4, 2, 3, 3, 7, 3, 4, 2, 4, 3, 4, 2, 5, 2, 3, 4, 4, 3, 4, 2, 5, 5, 3, 2, 4, 3, 3, 3, 5, 2, 5, 3, 4, 3, 3, 3, 6, 2, 4, 4, 5, 2, 4, 2, 5, 4, 3, 2, 5
Offset: 1

Views

Author

Gus Wiseman, May 23 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A weak run-sum of a sequence is the sum of any consecutive constant subsequence.

Examples

			The prime indices of 72 are {1,1,1,2,2}, with weak runs {}, {1}, {1,1}, {1,1,1}, {2}, {2,2}, which have sums 0, 1, 2, 3, 2, 4, of which 5 are distinct, so a(72) = 5.
		

Crossrefs

Positions of 2's are A000040.
Positions of first appearances are A000079.
The strong version is A353835, firsts A002110.
Partitions with distinct run-sums are ranked by A353838, counted by A353837.
The strong version for compositions is A353849.
The greatest run-sum is given by A353862, least A353931.
A001222 counts prime factors, distinct A001221.
A005811 counts runs in binary expansion.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A165413 counts distinct run-lengths in binary expansion, sums A353929.
A300273 ranks collapsible partitions, counted by A275870.
A353832 represents taking run-sums of a partition, compositions A353847.
A353833 ranks partitions with all equal run-sums, counted by A304442.
A353840-A353846 pertain to partition run-sum trajectory.
A353852 ranks compositions with all distinct run-sums, counted by A353850.

Programs

  • Mathematica
    Table[Length[Union@@Cases[FactorInteger[n],{p_,k_}:>Range[0,k]*PrimePi[p]]],{n,100}]
  • PARI
    pis_to_runs(n) = { my(runs=List([]), f=factor(n)); for(i=1,#f~,while(f[i,2], listput(runs,primepi(f[i,1])); f[i,2]--)); (runs); };
    A353861(n) = if(1==n,n,my(pruns = pis_to_runs(n), runsum = 0, runsums = List([])); for(i=1,#pruns, listput(runsums, runsum); if((i>1) && pruns[i] == pruns[i-1], runsum += pruns[i], runsum = pruns[i])); listput(runsums, runsum); #Set(runsums)); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(108) by Antti Karttunen, Jan 20 2025

A353835 Number of distinct run-sums of the prime indices of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 3
Offset: 1

Views

Author

Gus Wiseman, May 23 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The sequence of runs of a sequence consists of its maximal consecutive constant subsequences when read left-to-right. For example, the runs of (2,2,1,1,1,3,2,2) are (2,2), (1,1,1), (3), (2,2), with sums (4,3,3,4).

Examples

			The prime indices of 3780 are {1,1,2,2,2,3,4}, with distinct run-sums {2,3,4,6}, so a(3780) = 4.
The prime indices of 8820 are {1,1,2,2,3,4,4}, with distinct run-sums {2,3,4,8}, so a(8820) = 4.
The prime indices of 13860 are {1,1,2,2,3,4,5}, with distinct run-sums {2,3,4,5}, so a(13860) = 4.
The prime indices of 92400 are {1,1,1,1,2,3,3,4,5}, with distinct run-sums {2,4,5,6}, so a(92400) = 4.
		

Crossrefs

Positions of first appearances are A002110.
A version for binary expansion is A165413.
Positions of 0's and 1's are A353833, nonprime A353834, counted by A304442.
The case of all distinct run-sums is ranked by A353838, counted by A353837.
The version for compositions is A353849.
The weak version is A353861.
A001222 counts prime factors, distinct A001221.
A005811 counts runs in binary expansion.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A300273 ranks collapsible partitions, counted by A275870.
A351014 counts distinct runs in standard compositions.
A353832 represents the operation of taking run-sums of a partition.
A353840-A353846 pertain to partition run-sum trajectory.
A353862 gives greatest run-sum of prime indices, least A353931.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    Table[Length[Union[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>PrimePi[p]*k]]],{n,100}]
  • PARI
    pis_to_runs(n) = { my(runs=List([]), f=factor(n)); for(i=1,#f~,while(f[i,2], listput(runs,primepi(f[i,1])); f[i,2]--)); (runs); };
    A353832(n) = if(1==n,n,my(pruns = pis_to_runs(n), m=1, runsum=pruns[1]); for(i=2,#pruns,if(pruns[i] == pruns[i-1], runsum += pruns[i], m *= prime(runsum); runsum = pruns[i])); (m*prime(runsum)));
    A353835(n) = omega(A353832(n)); \\ Antti Karttunen, Jan 20 2025

Formula

a(n) = A001221(A353832(n)). [From formula section of A353832] - Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 20 2025
Previous Showing 21-30 of 255 results. Next