cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A132767 a(n) = n*(n + 25).

Original entry on oeis.org

0, 26, 54, 84, 116, 150, 186, 224, 264, 306, 350, 396, 444, 494, 546, 600, 656, 714, 774, 836, 900, 966, 1034, 1104, 1176, 1250, 1326, 1404, 1484, 1566, 1650, 1736, 1824, 1914, 2006, 2100, 2196, 2294, 2394, 2496, 2600, 2706, 2814, 2924, 3036, 3150, 3266, 3384
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Comments

a(n) is the Zagreb 1 index of the Mycielskian of the cycle graph C[n]. See p. 205 of the D. B. West reference. - Emeric Deutsch, Nov 04 2016

References

  • Douglas B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001.

Crossrefs

Programs

Formula

a(n) = 2*n + a(n-1) + 24 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(n) = n^2 + 25*n. - Omar E. Pol, Nov 04 2016
From Chai Wah Wu, Dec 17 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: 2*x*(13 - 12*x)/(1-x)^3. (End)
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(25)/25 = A001008(25)/A102928(25) = 34052522467/223092870000, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/25 - 19081066231/669278610000. (End)
E.g.f.: x*(26 + x)*exp(x). - G. C. Greubel, Mar 13 2022

A132768 a(n) = n*(n + 26).

Original entry on oeis.org

0, 27, 56, 87, 120, 155, 192, 231, 272, 315, 360, 407, 456, 507, 560, 615, 672, 731, 792, 855, 920, 987, 1056, 1127, 1200, 1275, 1352, 1431, 1512, 1595, 1680, 1767, 1856, 1947, 2040, 2135, 2232, 2331, 2432, 2535, 2640, 2747, 2856, 2967, 3080, 3195, 3312, 3431
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = n*(n + 26).
a(n) = 2*n + a(n-1) + 25, with a(0)=0. - Vincenzo Librandi, Aug 03 2010
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(26)/26 = A001008(26)/A102928(26) = 34395742267/232016584800, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 18051406831/696049754400. (End)
From G. C. Greubel, Mar 13 2022: (Start)
G.f.: x*(27 - 25*x)/(1-x)^3.
E.g.f.: x*(27 + x)*exp(x). (End)

A078456 Number of numbers less than prime(1)*...*prime(n) having exactly one prime factor among (prime(1),...,prime(n)) where prime(n) is the n-th prime.

Original entry on oeis.org

1, 3, 14, 92, 968, 12096, 199296, 3679488, 82607616, 2349508608, 71507128320, 2604912721920, 105300128563200, 4466750187110400, 207324589680230400, 10866166392736972800, 634672612705724006400, 38337584554108256256000
Offset: 1

Views

Author

Benoit Cloitre, Dec 31 2002

Keywords

Comments

For n>1 a(n) is the determinant of the (n-1) X (n-1) matrix with elements M[i,j] = Prime[i+1] if i=j and 1 otherwise. (See example lines.) - Alexander Adamchuk, Jun 02 2006
Second column of A096294. - Eric Desbiaux, Jun 20 2013

Examples

			a(2)=3 since 2*3=6 and 2,3,4 have 1 prime factor among (2,3)
3 1 1 1 1 ...
1 5 1 1 1 ...
1 1 7 1 1 ...
1 1 1 11 1 ...
1 1 1 1 13 ...
and so a(2) = 3, a(3) = 3*5 - 1*1 = 14, a(4) = 3*5*7 + 1*1*1 + 1*1*1 - 7*1*1 - 5*1*1 - 3*1*1 = 92, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[ Det[ DiagonalMatrix[ Table[ Prime[i+1]-1, {i, 1, n-1} ] ] + 1 ], {n, 1, 20} ] (* Alexander Adamchuk, Jun 02 2006 *)
  • PARI
    a(n)=sum(k=1,prod(i=1,n, prime(i)),if(isprime(gcd(k,prod(i=1,n, prime(i)))),1,0))
    
  • PARI
    a(n) = matdet(matrix(n-1, n-1, j, k, if (j==k, prime(j+1), 1))); \\ after Mathematica; Michel Marcus, Oct 02 2016

Formula

a(n) = (prime(n)-1)*a(n-1) + A005867(n). - Matthew Vandermast, Jun 06 2004
a(n) = A120071(n) * A135212(n). - Alexander Adamchuk, Nov 23 2007
a(n) = A117494(A002110(n)). - Ridouane Oudra, Sep 18 2022

Extensions

a(7) from Ralf Stephan, Mar 25 2003
a(8)-a(12) from Matthew Vandermast, Jun 06 2004
More terms from Alexander Adamchuk, Jun 02 2006

A132769 a(n) = n*(n + 27).

Original entry on oeis.org

0, 28, 58, 90, 124, 160, 198, 238, 280, 324, 370, 418, 468, 520, 574, 630, 688, 748, 810, 874, 940, 1008, 1078, 1150, 1224, 1300, 1378, 1458, 1540, 1624, 1710, 1798, 1888, 1980, 2074, 2170, 2268, 2368, 2470, 2574, 2680, 2788, 2898, 3010, 3124, 3240, 3358, 3478
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = 2*n + a(n-1) + 26, with a(0)=0. - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=28, a(2)=58; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Oct 14 2012
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(27)/27 = A001008(27)/A102928(27) = 312536252003/2168462696400, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/27 - 57128792093/2168462696400. (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: 2*x*(14 - 13*x)/(1 - x)^3.
E.g.f.: exp(x)*x*(28 + x).
a(n) = 2*A132756(n). (End)

A132770 a(n) = n*(n + 28).

Original entry on oeis.org

0, 29, 60, 93, 128, 165, 204, 245, 288, 333, 380, 429, 480, 533, 588, 645, 704, 765, 828, 893, 960, 1029, 1100, 1173, 1248, 1325, 1404, 1485, 1568, 1653, 1740, 1829, 1920, 2013, 2108, 2205, 2304, 2405, 2508, 2613, 2720, 2829, 2940, 3053, 3168, 3285, 3404, 3525
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = 2*n + a(n-1) + 27, with a(0)=0. - Vincenzo Librandi, Aug 03 2010
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(28)/28 = A001008(28)/A102928(28) = 315404588903/2248776129600, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 7751493599/321253732800. (End)
G.f.: x*(29 - 27*x)/(1-x)^3. - Harvey P. Dale, Aug 03 2021
E.g.f.: x*(29 + x)*exp(x). - G. C. Greubel, Mar 13 2022

A132771 a(n) = n*(n + 29).

Original entry on oeis.org

0, 30, 62, 96, 132, 170, 210, 252, 296, 342, 390, 440, 492, 546, 602, 660, 720, 782, 846, 912, 980, 1050, 1122, 1196, 1272, 1350, 1430, 1512, 1596, 1682, 1770, 1860, 1952, 2046, 2142, 2240, 2340, 2442, 2546, 2652, 2760, 2870, 2982, 3096, 3212, 3330, 3450, 3572
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = 2*n + a(n-1) + 28 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(29)/29 = A001008(29)/A102928(29) = 9227046511387/67543597321200, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/29 - 236266661971/9649085331600. (End)
From G. C. Greubel, Mar 13 2022: (Start)
G.f.: 2*(15*x - 14*x^2)/(1-x)^3.
E.g.f.: x*(30 + x)*exp(x). (End)

A132772 a(n) = n*(n + 30).

Original entry on oeis.org

0, 31, 64, 99, 136, 175, 216, 259, 304, 351, 400, 451, 504, 559, 616, 675, 736, 799, 864, 931, 1000, 1071, 1144, 1219, 1296, 1375, 1456, 1539, 1624, 1711, 1800, 1891, 1984, 2079, 2176, 2275, 2376, 2479, 2584, 2691, 2800, 2911, 3024, 3139, 3256, 3375, 3496, 3619
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

G.f.: x*(31-29*x)/(1-x)^3. - R. J. Mathar, Nov 14 2007
a(n) = 2*n + a(n-1) + 29 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=31, a(2)=64, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Mar 06 2015
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(30)/30 = A001008(30)/A102928(30) = 9304682830147/69872686884000, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 225175759291/9981812412000. (End)
E.g.f.: x*(31 + x)*exp(x). - G. C. Greubel, Mar 13 2022

A132773 a(n) = n*(n + 31).

Original entry on oeis.org

0, 32, 66, 102, 140, 180, 222, 266, 312, 360, 410, 462, 516, 572, 630, 690, 752, 816, 882, 950, 1020, 1092, 1166, 1242, 1320, 1400, 1482, 1566, 1652, 1740, 1830, 1922, 2016, 2112, 2210, 2310, 2412, 2516, 2622, 2730, 2840, 2952, 3066, 3182, 3300, 3420, 3542, 3666
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

G.f.: 2*x*(-16+15*x)/(-1+x)^3. - R. J. Mathar, Nov 14 2007
a(n) = 2*A132758(n). - R. J. Mathar, Jul 22 2009
a(n) = 2*n + a(n-1) + 30, with n > 0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(31)/31 = A001008(31)/A102928(31) = 290774257297357/2238255069850800, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/31 - 7313175618421/319750724264400. (End)
From Elmo R. Oliveira, Dec 13 2024: (Start)
E.g.f.: exp(x)*x*(32 + x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Previous Showing 11-18 of 18 results.