A132767 a(n) = n*(n + 25).
0, 26, 54, 84, 116, 150, 186, 224, 264, 306, 350, 396, 444, 494, 546, 600, 656, 714, 774, 836, 900, 966, 1034, 1104, 1176, 1250, 1326, 1404, 1484, 1566, 1650, 1736, 1824, 1914, 2006, 2100, 2196, 2294, 2394, 2496, 2600, 2706, 2814, 2924, 3036, 3150, 3266, 3384
Offset: 0
References
- Douglas B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Felix P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, Preprint on ResearchGate, March 2014.
- Wikipedia, Mycielskian.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Mathematica
Table[n (n + 25), {n, 0, 50}] (* Bruno Berselli, Aug 22 2018 *) LinearRecurrence[{3,-3,1},{0,26,54},60] (* Harvey P. Dale, Feb 20 2023 *)
-
PARI
a(n)=n*(n+25) \\ Charles R Greathouse IV, Jun 17 2017
-
Sage
[n*(n+25) for n in (0..50)] # G. C. Greubel, Mar 13 2022
Formula
a(n) = 2*n + a(n-1) + 24 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(n) = n^2 + 25*n. - Omar E. Pol, Nov 04 2016
From Chai Wah Wu, Dec 17 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: 2*x*(13 - 12*x)/(1-x)^3. (End)
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(25)/25 = A001008(25)/A102928(25) = 34052522467/223092870000, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/25 - 19081066231/669278610000. (End)
E.g.f.: x*(26 + x)*exp(x). - G. C. Greubel, Mar 13 2022
Comments